Abstract:
A printing apparatus that includes nozzle arrays, formed of nozzles for ejecting ink of the first to fourth ink color groups, and that scans a print medium while moving the nozzle arrays to perform printing. For printing a unit area of a print medium, where printing is to be completed by performing a plurality of scans, the printing apparatus performs a plurality of scans, and conveys, between movements, a print medium a predetermined amount, which is equivalent to the width of the unit area. Then, to perform a plurality of scans using the nozzle arrays for the first to fourth ink color groups, print data are generated, so that for the nozzle arrays that belong to two ink color groups, the nozzle array for the first ink color group is employed to eject ink into the unit area prior to the nozzle array for the second ink color group.
Abstract:
In order to vary a threshold value for performing an error diffusion process depending on a pixel position, a threshold value matrix configured to have pluralities of rows and columns is prepared. In this case, pieces of data in the threshold value matrix are arrayed such that average values in the respective rows and average values in the respective columns are almost the same value. If such a threshold value matrix is used to perform the error diffusion process, the dot sparseness and denseness do not occur with a period of the matrix, and therefore the pattern or sweeping phenomenon specific to the error diffusion can be suppressed.
Abstract:
An ink jet printing apparatus and an ink jet printing method are provided which use a printing head having a plurality of ejection opening arrays and enable high quality printing without causing uneven density in a conveying direction. For this purpose, by providing a plurality of ejection opening arrays to chips constituting the printing head and changing data assigning ratio of each ejection opening array, deviation in impact positions depending on the distance between the ejection opening arrays becomes inconspicuous.
Abstract:
The print permitting ratios of the masks in the first to fourth passes of a C ink are respectively 6.2%, 37.5%, 37.5%, and 18.8%. On the other hand, the print permitting ratios of the masks in the first to fourth passes of an M ink are respectively 12.5%, 37.5%, 37.5%, and 12.5%. In this way, the respective masks are set such that a larger amount of the C ink is applied in a later pass as compared with the M ink. Thereby, it is possible to reduce an amount of the M ink to be applied later with respect to the C ink functioning to “reduce a permeation speed of an ink applied later by filling,” and it is possible to prevent a permeation speed from slowing down overall. As a result, it is possible to prevent the occurrence of beading due to a time to complete permeation becoming longer.
Abstract:
An ink jet printing apparatus and an ink jet printing method are provided which use a printing head having a plurality of ejection opening arrays and enable high quality printing without causing uneven density in a conveying direction. For this purpose, by providing a plurality of ejection opening arrays to chips constituting the printing head and changing data assigning ratio of each ejection opening array, deviation in impact positions depending on the distance between the ejection opening arrays becomes inconspicuous.
Abstract:
When a feeding amount for multi-pass printing is changed, the purpose related to an image quality using a binary data generation pattern can still be attained by, for example, a density pattern method. Specifically, a multi-pass printing mode is identified, and a density pattern selection matrix associated with a cycle of binary data generation is selected in accordance with the selected printing mode. That is, a density pattern selection matrix employed for binary data generation using a density pattern is changed to a size corresponding to the feeding amount designated by the selected printing mode. Thereby, a phenomenon that a unit used for image processing to gain a predetermined purpose related to an image quality does not match a unit area used for a printing operation is avoided, and an image printing purpose using a binary data generation pattern can be appropriately attained.
Abstract:
This invention relates to a printer and printing method capable of printing at high quality at a printing boundary where different printing elements can print in the same area of a printing medium. According to this method, when printing by moving a printhead in which a plurality of printing elements are arrayed relatively to a printing medium, the following control are performed That, is, it is checked whether different printing elements are printable in the same area on the printing medium on the basis of input image data. It is checked whether the input image data is used to print a text image or a graphic/halftone image. It is controlled in accordance with the check results to print in the same printable area by the different printing elements by changing respective ratios at which printing elements are used.
Abstract:
Disclosed herein is an ink comprising a first pigment, a second pigment and a dispersant, both of the pigment being dispersed in an aqueous medium, wherein the first pigment is a self-dispersing pigment having an anionic group or a cationic group, the group being bonded directly or through an atomic group to a surface of the pigment, the second pigment is a pigment dispersible in an aqueous medium with the dispersant, and the dispersant is an ionic polymeric dispersant having a same polarity as that of the group bonded to the surface of the pigment or a nonionic polymeric dispersant.
Abstract:
Disclosed are polyester pellets made of a polyester which comprises dicarboxylic acid constituent units derived from dicarboxylic acids containing terephthalic acid and isophthalic acid and diol constituent units derived from diols containing ethylene glycol and 1,3-bis(2-hydroxyethoxy)benzene, and which has the properties: constituent units derived from terephthalic acid are 15 to 99.5% by mol and constituent units derived from isophthalic acid are 0.5 to 85% by mol, both based on the total amount of dicarboxylic acid isophthalic acid constituent units (i); constituent units derived from ethylene glycol are 25 to 99.5% by mol and constituent units derived from 1,3-bis(2-hydroxyethoxy)benzene are 0.5 to 75% by mol, both based on the total amount of the diol constituent units (ii); the intrinsic viscosity is in the range of 0.5 to 1.5 dl/g; and the melting point (Tm (°C.)), as measured by a differential scanning calorimeter, satisfies the formula [1/527−0.0017·ln(1−(mI+mB)/200)]−1−273
Abstract:
There have been desired a liquid discharge method, a liquid discharge head and a liquid discharge apparatus capable of sufficient temperature adjustment for maintaining the viscosity of the discharge liquid within an appropriate range, there by maintaining constantly stable liquid discharge. In this invention, the movable member provided with a heating member simultaneously or individually controls the temperatures of the liquid in the first liquid path and that in the second liquid path.