Abstract:
A method of pouring molten metal from a molten metal holding and pouring box with a rectangular-shaped upper section and a pyramidal-shaped lower section provides a relatively constant flow of molten metal being poured from the box through each of two bottom nozzles into two separate foundry molds at the same time.
Abstract:
A batch charge conveying system is provided for multiple electric induction furnaces where each one of the multiple furnaces has a separate charge conveying apparatus. An assembled batch charge is loaded on a single assembled batch charge transport apparatus that selectively delivers the assembled batch charge to a separate charge conveying apparatus associated with one of the multiple electric induction furnaces.
Abstract:
An electric induction system and method is provided for induction heating and melting of basalt charge for the production of molten process basalt that can be used for molten basalt processes that produce basalt articles of manufacture including cast basalt articles and continuous basalt casting processes for producing basalt articles such as fibers and filaments.
Abstract:
A variable width transverse flux electric inductor has a fixed powered coil section and associated box-like moveable passive coil sections that electromagnetically couple with magnetic flux generated by current flowing through the fixed powered section. The passive coil sections can be transversely moved across the workpiece to accommodate induction heating of workpieces having different widths or track movement of the workpiece. Alternatively the fixed powered coil section and associated moveable coil sections may be connected to each other through flexible connections, sliding contacts or other means, such as clamps, so that an electrical connection can be maintained between both in any relative position.
Abstract:
An electric induction furnace for heating and melting electrically conductive materials is provided with a lining wear detection system that can detect replaceable furnace lining wear when the furnace is properly operated and maintained.
Abstract:
Apparatus and method are provided for electric induction heating and melting of a transition material that is non-electrically conductive in the solid state and electrically conductive in the non-solid state in an electric induction heating and melting process wherein solid or semi-solid charge is periodically added to a heel of molten transition material initially placed in a refractory crucible. Induction power is sequentially supplied to a plurality of coils surrounding the exterior height of the crucible at high power level and high frequency with in-phase voltage until a crucible batch of transition material is in the crucible when the induction power is reduced in power level and frequency with voltage phase shifting to the induction coils along the height of the crucible to induce a unidirectional electromagnetic stir of the crucible batch of material.
Abstract:
Solid or semi-solid feedstock is melted in an open bottom electric induction cold crucible furnace. Directionally solidified multi-crystalline solid purified material continuously exits the bottom of the furnace and may optionally pass through a thermal conditioning chamber before being gravity fed into a transport mold where an ingot of the purified multi-crystalline solid material is transported to a remote holding area after the transport mold is filled with the multi-crystalline material and cut from the continuous supply of material. Cool down of the ingot is accomplished remote from the open bottom of the electric induction cold crucible furnace.
Abstract:
Sections of an induction heating coil are connected in parallel with sections of a shunt coil so that the section to section impedance of the unit differs. Accordingly, the amount of heat power applied to sections of a metal object by the heating coil is varied according to a predetermined pattern. Electric power applied to the entire shunt coil and heating coil unit is lowered over a period of time to cool the metal object progressively along a geometrical axis.