Abstract:
An electric induction furnace for heating and melting electrically conductive materials is provided with a lining wear detection system that can detect replaceable furnace lining wear when the furnace is properly operated and maintained. In some embodiments of the invention the lining wear detection system utilizes an electrically conductive wire assemblage embedded in a wire assemblage refractory disposed between the replaceable lining and the furnace's induction coil.
Abstract:
Large steel ingot casting is accomplished with a top suspended induction heating device supplied with variable power and variable frequency from a power source. By the induction heating and stirring provided by the top suspended induction heating device, metal solidification advances progressively upwards from bottom to top, and the upper molten metal in a riser part compensates for shrinkage of the lower solidified metal in the main part. Inclusions are selectively moved out of the molten metal by a variable electromagnetic stirring force and the formation of casting defects is suppressed.
Abstract:
A clean cell environment for a continuous roll-over electric induction batch casting furnace system is provided where each combination of batch charge, for example an ingot, induction melting (ingot-melt) process and mold-pour process are performed in a clean cell environment and each combination ingot-melt and mold-pour process is traceable as to the identity of the specific ingot, or other charge form (composition) and the mold (fabrication identifier).
Abstract:
Apparatus and method are provided for electric induction heating and melting of a transition material that is non-electrically conductive in the solid state and electrically conductive in the non-solid state in an electric induction heating and melting process wherein solid or semi-solid charge is periodically added to a heel of molten transition material initially placed in a refractory crucible. Induction power is sequentially supplied to a plurality of coils surrounding the exterior height of the crucible at high power level and high frequency with in-phase voltage until a crucible batch of transition material is in the crucible when the induction power is reduced in power level and frequency with voltage phase shifting to the induction coils along the height of the crucible to induce a unidirectional electromagnetic stir of the crucible batch of material.
Abstract:
Apparatus and method are provided for electric induction heating and melting of a transition material that is non-electrically conductive in the solid state and electrically conductive in the non-solid state in an electric induction heating and melting process wherein solid or semi-solid charge is periodically added to a heel of molten transition material initially placed in a refractory crucible. Induction power is sequentially supplied to a plurality of coils surrounding the exterior height of the crucible at high power level and high frequency with in-phase voltage until a crucible batch of transition material is in the crucible when the induction power is reduced in power level and frequency with voltage phase shifting to the induction coils along the height of the crucible to induce a unidirectional electromagnetic stir of the crucible batch of material.
Abstract:
The present invention relates to an electric channel inductor assembly. A nonremovable, hollow and nonmagnetic channel mold is used to form the one or more flow channels of the electric channel inductor assembly for electromagnetic circulation of a molten metal composition. A heated fluid medium is circulated in the hollow interior of the channel mold after the mold is situated in the inductor assembly to heat treat the refractory surrounding the exterior walls of the mold. After heat treatment a liquid is supplied to the hollow interior of the mold to chemically dissolve the channel mold prior to circulation of the molten metal composition.
Abstract:
A fluid latent heat absorption electric induction heater is provided for raising the temperature of a fluid supplied to a fluid-driven turbine in a turbine-driven electric power generation system. The fluid latent heat absorption electric induction heater alternatively transfers heat to the fluid by induced susceptor heating, or a combination of inductor Joule heating and induced susceptor heating. The fluid may be water-steam for powering a steam-driven turbine or another fluid used in a phase change system for driving a fluid-driven turbine in a turbine-driven electric power generation system.
Abstract:
Apparatus and method are provided for electric induction heating and melting of a transition material that is non-electrically conductive in the solid state and electrically conductive in the non-solid state in an electric induction heating and melting process wherein solid or semi-solid charge is periodically added to a heel of molten transition material initially placed in a refractory crucible. Induction power is sequentially supplied to a plurality of coils surrounding the exterior height of the crucible at high power level and high frequency with in-phase voltage until a crucible batch of transition material is in the crucible when the induction power is reduced in power level and frequency with voltage phase shifting to the induction coils along the height of the crucible to induce a unidirectional electromagnetic stir of the crucible batch of material.
Abstract:
Incipient failure of a capacitor operating as a part of an induction furnace circuit is detected by monitoring the capacitor to determine the presence of high-frequency signals generated by the capacitor as its dielectric material deteriorates. The lower limit of the frequencies of such signals is in the range from 50 to 200 kHz. The sensing apparatus for a 3 kHz induction heating circuit includes detector means for converting the generated signals exceeding about 150 kHz into a control signal whose level exceeds a predetermined value when the generated signals are representative of incipient deterioration of the dielectric. Indicator means responsive to the control signal is operated when the latter signal exceeds said predetermined value, and may disconnect power from the capacitor.
Abstract:
THE ABILITY OF A CORELESS INDUCTION FURNACE TO MELT FINE PARTICLES IS ENHANCED BY PROVIDING A LOWER SINGEL PHASE COIL WHICH SUPPLIES MELTING CURRENTS AND AN UPPER POLYPHASE COIL WHICH STIRS THE MOLTEN METAL SO AS TO LIFT THE OUTER RIM OF MOLTEN METAL ADJACENT THE SURFACE.