Abstract:
A video pod comprises side wails and a roof; a first display device inside the video pod; a second display outside and above en opening to the pod; a payment device; an input device; and a memory storing a plurality of video programs. The first display device is arranged to display a selected one of said video programs upon payment via the payment device and selection via the input device by a user, and the second display device is arranged to display a promotional video different to the video programs.
Abstract:
Provided herein methods for determining whether a subject, particularly a human subject, is at risk of developing, having, or experiencing a complication of cardiovascular disease, and methods of treating subjects who are identified by the current methods of being at risk for cardiovascular disease. In one embodiment, the method comprises determining levels of one or more oxidized apolipoprotien A-I related biomolecules in a bodily sample from the subject. Also, provided are kits and reagents for use in the present methods. Also provided are methods for monitoring the status of cardiovascular disease in a subject or the effects of therapeutic agents on subjects with cardiovascular disease. Such method comprising determining levels of one or more oxidized apolipoprotein A-I related molecules in bodily samples taken from the subject over time or before and after therapy.
Abstract:
A foot pad device and a method of obtaining weight data from a force sensor in a foot pad worn by a user engaging in a footstep, including placing the force sensor under the ball of the foot of the user and/or the heel of the foot of the user; receiving an entered patient weight value for the user; collecting force data from the force sensor; calculating a weight value based on the collected force data and a scaling and/or offset parameter; comparing the calculated weight value to the entered patient weight value; comparing the calculated weight value to zero; adjusting the scaling and/or offset parameter; and repeating the steps periodically. The method may include comparing the collected force data to a functionality indication range, flagging the force sensor if the collected force data is outside the functionality indication range, and disregarding force data from the flagged force sensor.
Abstract:
A transistor device and method are disclosed for reducing parasitic resistance and enhancing channel mobility using a metal alloy layer over a conductive region. A transistor device may include a conductive region such as a source, drain and/or gate including at least one first conductive material, and a metal alloy layer disposed on substantially all of a surface of the conductive region, the metal alloy layer including a second conductive material different than the at least one first conductive materials. In one embodiment, the second conductive material includes a cobalt and/or nickel alloy. The metal alloy layer provides a non-epitaxial raised source/drain (and gate) to reduce the parasitic series resistance in, for example, nFETs fabricated on UTSOI. In addition, the metal alloy layer may include a stress to enhance mobility in a channel of the transistor device. The metal alloy layer may be formed using a selective electrochemical metal deposition process such as electroless or electrolytic plating.
Abstract:
A set of related methods of demodulating amplitude and frequency modulated signals. The emphasis is on using an iterative approach to separate an envelope signal and a frequency modulated signal from which a physically meaningful, non-negative instantaneous frequency can be derived. Three schemes are presented. The first scheme represents signals as the single product of an envelope signal and a frequency modulated signal, derived by iterative methods. The remaining schemes involve repeatedly smoothing the signal prior to demodulation. The signal is represented as being the sum of a set of component signals, each of which is the product of an envelope signal and a frequency modulated signal. For all three schemes the envelope and instantaneous frequency values can be presented in the form of the Demodulated Signal time-frequency representation.