Abstract:
An organic light emitting device including a substrate on which an organic light emitting unit is formed, wherein the organic light emitting unit sequentially includes a first electrode, an organic layer, and a second electrode; and a passivation layer covering the substrate and the second electrode, and a method of manufacturing the organic light emitting device.
Abstract:
Provided is a light-emitting device which has a simple structure and can be manufactured in a simple process, has increased light coupling efficiency and brightness, and can reduce adverse effects of optical resonance on a view angle and emission spectrum. The light-emitting device includes a substrate; a light-emitting diode formed on the substrate; and an optical resonance layer formed outside the light-emitting diode that induces resonance of light emitted from the light-emitting diode.
Abstract:
An organic light-emitting device includes a substrate, an anode including Ag on the substrate, a transparent inorganic thin-film layer on the anode, the transparent inorganic thin-film layer being in contact with the anode and having non-conductive characteristics; and an emitting layer and a cathode disposed sequentially on the inorganic thin-film layer.
Abstract:
In one aspect, a display device comprising: a lower substrate, a light-emitting element formed on the lower substrate and comprising a plurality of pixels, an upper substrate disposed on the light-emitting element with a gap therebetween sealed with a sealant, a filler filling the gap between the light-emitting element and the upper substrate, and a light-absorbing material formed between the lower substrate and the upper substrate and selectively absorbing light of a certain wavelength range is provided.
Abstract:
A display device includes a substrate, a white light source on the substrate, a dichroic layer between a viewing surface of the display device and the white light source, the dichroic layer being configured to allow light of a predetermined wavelength band to be transmitted therethrough, and a ¼ wavelength layer between the dichroic layer and the white light source.
Abstract:
A polarizer and a flat panel display apparatus including the polarizer are provided. The polarizer includes: a base; and a plurality of grids on the base, the plurality of grids including a first component and a second component, and having a thickness in a thickness direction of the polarizer. The first component includes a dielectric material and the second component includes a metal. The first component and the second component have a concentration gradient in the thickness direction, wherein a concentration of the first component in the grids increases along a thickness direction toward the external light incidence side, and a concentration of the second component in the grids increases along a thickness direction away from the external light incidence side.
Abstract:
An organic EL display device, and a manufacturing method thereof, including a rear substrate, and an organic EL portion formed on a surface of the rear substrate. The organic EL portion includes a first electrode, an organic layer, and a second electrode sequentially stacked, and a nano-porous layer and a highly refractive layer are interposed between the rear substrate and the first electrode.
Abstract:
An electroluminescence (EL) display device with improved external light coupling efficiency and brightness that can be easily manufactured and a method of manufacturing the EL display device are disclosed. In one embodiment, the EL display device includes a substrate, a first electrode formed above the substrate, a second electrode formed above the first electrode and facing the first electrode, a first intermediate layer including a luminescence layer and disposed between the first and second electrodes, a color converting layer disposed on top of the second electrode and a diffraction grating disposed between the second electrode and the color converting layer.
Abstract:
A flat panel display can include a transparent substrate, a light emitting device formed on a surface of the transparent substrate, and a prism sheet formed on the other surface of the transparent substrate and having a plurality of polygonal protruding members having lengthwise axes parallel to one another to direct light output from the light emitting device in a predetermined direction. The sum of the thickness of the transparent substrate and the thickness of a portion of the prism sheet excluding the polygonal protruding members can be about 0.1 to about 0.5 mm.
Abstract:
A light-emitting device including: a substrate; a light-emitting diode; and an optical resonance layer to resonate light emitted from the light-emitting diode. The optical resonance layer includes a first layer, including a polysilsesquioxane-based copolymer. A linking group connecting two different silicon (Si) atoms of the polysilsesquioxane-based copolymer can be —O—, or a substituted or unsubstituted C1-C30 alkylene group.