Abstract:
The present invention comprises cyclic N-[1,3,4]-thiadiazol-2-yl-benzene sulfonamides, their functional derivatives as well as their physiologically acceptable salts and pharmaceutical compositions thereof that exhibit peroxisome proliferator activated receptor (PPAR) PPARdelta and PPARgamma agonist activity. The structure of the compounds of the invention are defined by Formula I below, wherein the various R1-R9 substituents are defined herein. Processes for the compounds preparation are also disclosed. The compounds are suitable for the treatment of fatty acid metabolism and glucose utilization disorders, disorders relating to insulin resistance are involved as well as demyelinating and other neurodegenerative disorders of the central and peripheral nervous system.
Abstract:
The present invention comprises phenyl-[1,2,4]-oxadiazol-5-one derivatives of the general formula I: wherein the R1-R10 and B, U, V, W, X, Y and Z substituents are defined herein. The claimed invention also comprises the compounds isomers and their physiologically acceptable salts as well as processes for their preparation. The compounds are suitable for the treatment and/or prevention of disorders of fatty acid metabolism and glucose utilization disorders as well as of disorders in which insulin resistance is involved and demyelinating and other neurodegenerative disorders of the central and peripheral nervous system.
Abstract:
The inventive compounds of the present invention are comprised of phenyl and pyridinyl-1,2,4-oxadiazolone derivatives and their physiologically acceptable salts and functional derivatives that are shown to provide peroxisome proliferator activator receptor (PPARdelta) agonist activity. The compounds of the present invention are comprised of the formula: wherein the substituents R1-R5 and R7-R10 are defined herein. The compounds are therapeutically effective in the regulation and modulation of lipid and carbohydrate metabolism in mammals and are thus suitable for the treatment of diseases such as type-2 diabetes, atherosclerosis, cardiovascular disorders and the like.
Abstract:
The invention relates to heterocyclic substituted amide derivatives that display selective binding to dopamine D3 receptors. In another aspect, the invention relates to a method for treating central nervous system disorders associated with the dopamine D3 receptor activity in a patient in need of such treatment comprising administering to the subject a therapeutically effective amount of said compounds for alleviation of such disorder. The central nervous system disorders that may be treated with these compounds include Psychotic Disorders, Substance Dependence, Substance Abuse, Dyskinetic Disorders (e.g. Parkinson's Disease, Parkinsonism, Neuroleptic-Induced Tardive Dyskinesia, Gilles de la Tourette Syndrome and Huntington's Disease), Dementia, Anxiety Disorders, Sleep Disorders, Circadian Rhythm Disorders and Mood Disorders. The subject invention is also directed towards processes for the preparation of the compounds described herein as well as methods for making and using the compounds as imaging agents for dopamine D3 receptors.
Abstract:
The invention refers to a protein from plasma membrane of adipocytes. The protein has specific binding affinity to phosphoinositoylglycans. It regulates glucose uptake by circumventing the insulin signaling cascade.