摘要:
According to an embodiment, techniques for estimating scalogram energy values in a wedge region of a scalogram are disclosed. A pulse oximetry system including a sensor or probe may be used to receive a photoplethysmograph (PPG) signal from a patient or subject. A scalogram, corresponding to the obtained PPG signal, may be determined. In an approach, energy values in the wedge region of the scalogram may be estimated by performing convolution-based or convolution-like operations on the obtained PPG signal, or a transformed version thereof, and the scalogram may be updated according to the estimated values. In an approach, a deskewing technique may be used to align data prior to adding the data to the scalogram. In an approach, one or more signal parameters may be determined based on the resolved and estimated values of the scalogram.
摘要:
According to embodiments, a pulse band region is identified in a wavelet scalogram of a physiological signal (e.g., a plethysmograph or photoplethysmograph signal). Components of the scalogram at scales larger than the identified pulse band region are then used to determine a baseline signal in wavelet space. The baseline signal may then be used to normalize the physiological signal. Physiological information may be determined from the normalized signal. For example, oxygen saturation may be determined using a ratio of ratios or any other suitable technique.
摘要:
According to embodiments, a wavelet transform ratio surface measure signal may be generated from two PPG signals. Values of the wavelet transform ratio surface measure signal at a given moment of time (i.e., instantaneous values) may be indicative of localized signal discrepancies within and/or between the PPG signals such as noise and signal artifacts. Spikes in the instantaneous values of the wavelet transform ratio surface measure signal may be located and used to determine a signal quality measure for the PPG signals. Characteristics of the spikes such as number, location, grouping, distribution, amplitude, and polarity may be used in the signal quality determination.
摘要:
The present disclosure relates to systems and methods for monitoring pain management using measurements of physiological parameters based on a PPG signal. A reference physiological parameter may be compared against a later measurement to identify a change in condition that may indicate a pain management problem.
摘要:
The present disclosure relates to signal processing and, more particularly, to determining the value of a physiological parameter, such as the blood oxygen saturation (SpO2) of a subject. In an embodiment, a first baseline for a first waveform and a second baseline for a second waveform are determined. In this embodiment, the first and second waveforms are indicative of the physiological parameter of the subject. The first and second waveforms are filtered to obtain a first direct-current (DC) component for the first waveform and a second DC component for the second waveform. A measured value for the physiological parameter is derived from the first and second baseline signals, and the first and second DC components. In an embodiment, the measured value for the physiological parameter is determined based on a ratio of the normalized difference between the DC component and the baseline signal for the first waveform with respect to same for the second waveform.
摘要:
According to embodiments, techniques for using continuous wavelet transforms to process pulses from a photoplethysmographic (PPG) signal are disclosed. The continuous wavelet transform of the PPG signal may be used to identify and characterize features and their periodicities within a signal. Regions, phases and amplitudes within the scalogram associated with these features may then be analyzed to identify, locate, and characterize a true pulse within the PPG signal. Having characterized and located the pulse in the PPG (possibly also using information gained from conventional pulse processing techniques such as, for example, by identifying turning points for candidate pulse maxima and minima on the PPG, frequency peak picking for candidate scales of pulses, etc.), the PPG may be parameterized for ease of future processing.
摘要:
According to embodiments, systems and methods for non-invasive blood pressure monitoring are disclosed. An exciter may induce perturbations in a subject, and a sensor or probe may be used to obtain a detected signal from the subject. The detected signal may then be used to measure one or more physiological parameters of the patient. For example if the perturbations are based on a known signal, any differences between the known signal and the input signal may be attributable to the patient's physiological parameters. A phase drift between the perturbation signal and the detected signal may be determined from a comparison of the scalograms of the exciter location and the sensor or probe location. From the scalogram comparison, more accurate and reliable physiological parameters may be determined.
摘要:
According to embodiments, techniques for using continuous wavelet transforms and spectral transforms to identify pulse rates from a photoplethysmographic (PPG) signal are disclosed. According to embodiments, candidate pulse rates of the PPG signal may be identified from a wavelet transformed PPG signal and a spectral transformed PPG signal. A pulse rate may be determined from the candidate pulse rates by selecting one of the candidate pulse rates or by combining the candidate pulse rates. According to embodiments, a spectral transform of a PPG signal may be performed to identify a frequency region associated with a pulse rate of the PPG signal. A continuous wavelet transform of the PPG signal at a scale corresponding to the identified frequency region may be performed to determine a pulse rate from the wavelet transformed signal.
摘要:
According to embodiments, techniques for using continuous wavelet transforms and spectral transforms to determine oxygen saturation from photoplethysmographic (PPG) signals are disclosed. According to embodiments, a first oxygen saturation may be determined from wavelet transformed PPG signals and a second oxygen saturation may be determined from spectral transformed PPG signals. An optimal oxygen saturation may be determined by selecting one of the first and the second oxygen saturation or by combining the first and the second oxygen saturation. According to embodiments, a spectral transform of PPG signals may be performed to identify a frequency region associated with a pulse rate of the PPG signal. A continuous wavelet transform of the PPG signals at a scale corresponding to the identified frequency region may be performed to determine oxygen saturation from the wavelet transformed signal.
摘要:
According to embodiments, systems and method are provided for adaptively filtering signals. A combination of filtering techniques is described in which non-wavelet based filtering techniques are used with wavelet-based filtering techniques to filter an input signal. One or more physiological parameters may then be determined from the filtered output signal.