Abstract:
The invention provides a thin film transistor (TFT) substrate comprises a plurality of gate lines, a plurality of data lines, gate terminals, data terminals and thin film transistors as well as a liquid crystal display (LCD) device having the TFT substrate. The gate terminal and/or data terminal contain a first portion and a second portion, and the first potion and the second portion are connected electrically with an end electrode made of a material which is anticorrosive in the air. The thin film transistor substrate of the invention prevents the spreading of the metal corrosion occurred at the gate leads to the display region of the LCD, and therefore the quality of the LCD device can be ensured.
Abstract:
Fringe field switching mode liquid crystal display (FFS LCD) devices are disclosed. A first substrate is disposed opposing a second substrate with a gap therebetween. A liquid crystal layer is interposed between the first and the second substrate. A gate line and data lines are formed on the first substrate in a matrix configuration and defining pixel areas. A counter electrode is disposed on each pixel area of the first substrate. A pixel electrode is disposed above the counter electrode with an insulating layer therebetween. The pixel electrode includes a plurality of parallel electrodes. Each electrode includes a first segment, a second segment, and a third segment, wherein the first segment has an included angle θ from the horizontal direction, the second segment has an included angle φ from the horizontal direction, and the first segment has an included angle θ from the horizontal direction.
Abstract:
The invention discloses a liquid crystal display panel, comprising pixel electrodes, common electrode lines, data lines and scanning lines, wherein at least two of the scanning lines are electrically connected to each other. The liquid crystal display panel has a plurality of conductive sections are disposed above at least part of each of the scanning lines other than said at least two scanning lines and electrically connected to the common electrode lines. The liquid crystal display panel of the invention can use Dot Inversion Driving with low power consumption. Meanwhile, the invention improves consistency of the RC delays on the individual scanning lines, decreases the difference among the RC delays of scanning signals on all of the scanning lines, and thereby achieves uniformity of a display frame on the liquid crystal display panel.
Abstract:
Fringe field switching mode liquid crystal display (FFS LCD) devices are disclosed. A first substrate is disposed opposing a second substrate with a gap therebetween. A liquid crystal layer is interposed between the first and the second substrate. A gate line and data lines are formed on the first substrate in a matrix configuration and defining pixel areas. A counter electrode is disposed on each pixel area of the first substrate. A pixel electrode is disposed above the counter electrode with an insulating layer therebetween. The pixel electrode includes a plurality of parallel electrodes. Each electrode includes a first segment, a second segment, and a third segment, wherein the first segment has an included angle θ from the horizontal direction, the second segment has an included angle φ from the horizontal direction, and the first segment has an included angle θ from the horizontal direction.
Abstract:
The invention provides a thin film transistor (TFT) substrate comprises a plurality of gate lines, a plurality of data lines, gate terminals, data terminals and thin film transistors as well as a liquid crystal display (LCD) device having the TFT substrate. The gate terminal and/or data terminal contain a first portion and a second portion, and the first potion and the second portion are connected electrically with an end electrode made of a material which is anticorrosive in the air. The thin film transistor substrate of the invention prevents the spreading of the metal corrosion occurred at the gate leads to the display region of the LCD, and therefore the quality of the LCD device can be ensured.
Abstract:
A liquid crystal display (LCD) substrate and a fabrication method thereof are provided. The LCD substrate comprises a substrate, a spacer definition layer formed on the substrate comprising a first step, and a spacer formed along a profile of the first step of spacer definition layer and adjacent to the first step, thereby forming a second step on the spacer. The invention utilizes a single photolithographic process to form spacers with steps, thus, effectively lowering the probability of mura defects caused by gravity, contact, or an uneven cell gap.
Abstract:
A method of forming a color filter layer having a light-scattering effect. First, substrate is provided, and a color filter layer is coated on the substrate. Then, an exposure-and-development process is performed to pattern the color filter layer. Subsequently, the color filter layer is post-baked to render the color filter layer a rough surface to provide the light-scattering effect, wherein the color filter layer has a surface roughness index Rz in the range of 0.5 to 2.0 μm.
Abstract:
A method of forming a color filter layer having a light-scattering effect. First, substrate is provided, and a color filter layer is coated on the substrate. Then, an exposure-and-development process is performed to pattern the color filter layer. Subsequently, the color filter layer is post-baked to render the color filter layer a rough surface to provide the light-scattering effect, wherein the color filter layer has a surface roughness index Rz in the range of 0.5 to 2.0 μm.
Abstract:
A liquid crystal display is suitable for displaying images with rapid motions, and comprises an active matrix substrate equipped with a plurality of thin film transistors. The active matrix substrate comprises a plurality of pixels that are placed at the encircled areas of a plurality of scanning lines and a plurality of data lines. Each pixel consists of two thin film transistors and one pixel electrode. The data lines connected electrodes of the thin film transistors are connected to two adjoining data lines respectively, whereas the pixel connected electrodes of the two thin film transistors are together connected to the pixel electrode. The gate electrodes of the two thin film transistors are connected to two adjoining scanning lines respectively.
Abstract:
According to the brightness distribution of a previous frame, the driving current of the backlight module dynamically varies. When the concentration of the brightness distribution is toward high brightness, the backlight module increases its luminous intensity. On the contrary, when the concentration of the brightness distribution is toward low brightness, the backlight module decreases its luminous intensity. We can set the luminous modulation period of the backlight module to be synchronized with a vertical scanning period or several vertical scanning periods.