Abstract:
An electronic device displays selectable user interface elements, detects a touch input on a first user interface element, and in response to detecting a first portion of the touch input, which reaches a first intensity threshold, changes an appearance of the first selectable user interface element to indicate that the input has been detected. The device then detects a second portion of the touch input, including an increase in intensity of the touch input followed by a decrease in intensity, and in response to detecting the second portion of the touch input: displays or forgoes displaying a representation of content corresponding to the first user interface element, including a plurality of selectable controls for interacting with the content, depending on whether the intensity of the touch input increases above the second intensity threshold during the second portion of the touch input.
Abstract:
Electronic devices are often equipped with a camera for capturing video content and/or a display for displaying video content. However, amateur users often capture video content without regard to composition, framing, or camera movement, resulting in video content that can be jarring or confusing to viewers. There is a need to automate the processing and presentation of video content in an aesthetically pleasing manner. The embodiments described herein provide a method of automatically cropping video content for presentation on a display.
Abstract:
A computing device having a touch-sensitive surface and a display, detects a stylus input on the touch-sensitive surface while displaying a user interface. A first operation is performed in the user interface in accordance with a determination that the stylus input includes movement of the stylus across the touch-sensitive surface while the stylus is detected on the touch-sensitive surface. A second operation different from the first operation is performed in the user interface in accordance with a determination that the stylus input includes rotation of the stylus around an axis of the stylus while the stylus is detected on the touch-sensitive surface. A third operation is performed in the user interface in accordance with a determination that the stylus input includes movement of the stylus across the touch-sensitive surface and rotation of the stylus around an axis of the stylus while the stylus is detected on the touch-sensitive surface.
Abstract:
An electronic device detects a contact associated with a focus selector that controls movement of a respective user interface object; and while continuously detecting the contact, the device detects first movement of the contact. In response to detecting the first movement of the contact, the device moves the focus selector and the respective user interface object, and determines an intensity of the contact. The device detects second movement of the contact and in response to detecting the second movement of the contact: when the contact meets respective intensity criteria, the device moves the focus selector and the user interface object; and when the contact does not meet the respective intensity criteria, the device moves the focus selector without moving the user interface object.
Abstract:
An electronic device with a display, a touch-sensitive surface, and sensors to detect intensity of contacts with the touch-sensitive surface displays, on the display, an affordance corresponding to respective content at a respective size and detects a gesture that includes an increase in intensity of a contact followed by a subsequent decrease in intensity of the contact. In response to the increase in intensity, the device decreases a size of the affordance below the respective size. In response to the subsequent decrease in intensity: when a maximum intensity of the contact is above a content-display intensity threshold, the device ceases to display the affordance and displays at least a portion of the respective content; and when a maximum intensity of the contact is below the content-display intensity threshold, the device increases the size of the affordance to the respective size and forgoes displaying the respective content.
Abstract:
An electronic device displays a user interface in a first display state. The device detects a first portion of a gesture on a touch-sensitive surface, including detecting intensity of a respective contact of the gesture. In response to detecting the first portion of the gesture, the device displays an intermediate display state between the first display state and a second display state. In response to detecting the end of the gesture: if intensity of the respective contact had reached a predefined intensity threshold prior to the end of the gesture, the device displays the second display state; otherwise, the device redisplays the first display state. After displaying an animated transition between a first display state and a second state, the device, optionally, detects an increase of the contact intensity. In response, the device displays a continuation of the animation in accordance with the increasing intensity of the respective contact.
Abstract:
An electronic device, with a touch-sensitive surface and a display, includes one or more sensors to detect intensity of contacts with the touch-sensitive surface. The device detects a contact on the touch-sensitive surface while a focus selector corresponding to the contact is at a respective location on the display associated with additional information not initially displayed on the display. While the focus selector is at the respective location, upon determining that the contact has an intensity above a respective intensity threshold before a predefined delay time has elapsed with the focus selector at the respective location, the device displays the additional information associated with the respective location without waiting until the predefined delay time has elapsed; and upon determining that the contact has an intensity below the respective intensity threshold, the device waits until the predefined delay time has elapsed to display the additional information associated with the respective location.
Abstract:
An electronic device with a touch-sensitive surface, a display, and one or more sensors to detect intensity of contacts with the touch-sensitive surface displays a graphical object inside of a frame on the display, and detects a gesture. Detecting the gesture includes: detecting a contact on the touch-sensitive surface while a focus selector is over the graphical object, and detecting movement of the contact across the touch-sensitive surface. In response to detecting the gesture: in accordance with a determination that the contact meets predefined intensity criteria, the device removes the graphical object from the frame; and in accordance with a determination that the contact does not meet the predefined intensity criteria, the device adjusts an appearance of the graphical object inside of the frame.
Abstract:
An electronic device, with a touch-sensitive surface and a display, includes one or more sensors to detect intensity of contacts with the touch-sensitive surface. The device displays, on the display, a first control for controlling a first operation. The device detects, on the touch-sensitive surface, a first input that corresponds to the first control; and in response to detecting the first input: in accordance with a determination that the first input meets first control-activation criteria but does not include a contact with a maximum intensity above a respective intensity threshold, the device performs the first operation; and in accordance with a determination that the first input includes a contact with an intensity above the respective intensity threshold, the device displays a second control for performing a second operation associated with the first operation.
Abstract:
An electronic device with a touch-sensitive surface and a display displays a user interface object on the display, detects a contact on the touch-sensitive surface, and detects a first movement of the contact across the touch-sensitive surface, the first movement corresponding to performing an operation on the user interface object, and, in response to detecting the first movement, the device performs the operation and generates a first tactile output on the touch-sensitive surface. The device also detects a second movement of the contact across the touch-sensitive surface, the second movement corresponding to reversing the operation on the user interface object, and in response to detecting the second movement, the device reverses the operation and generates a second tactile output on the touch-sensitive surface, where the second tactile output is different from the first tactile output.