-
公开(公告)号:US20220039048A1
公开(公告)日:2022-02-03
申请号:US17280207
申请日:2019-09-26
Applicant: Apple Inc.
Inventor: Alexey Khoryaev , Sergey Sosnin , Seung Hee Han , Mikhail Shilov , Yi Guo
Abstract: Systems, methods, and circuitries are disclosed for determining a position of a wireless device. In one example, an apparatus for a first wireless communication device including baseband circuitry having a radio frequency (RF) interface configured to transmit and receive RF signals is provided. The apparatus includes one or more processors configured to process a signal received from a second wireless communication device to identify at least first arrival path and a different arrival path between the first wireless communication device and the second wireless communication device; and determine a location of the second wireless communication device based on the first arrival path and the different arrival path.
-
公开(公告)号:US20210185625A1
公开(公告)日:2021-06-17
申请号:US17185623
申请日:2021-02-25
Applicant: Apple Inc.
Inventor: Ajit Nimbalker , Debdeep Chatterjee , Jeongho Jeon , Fatemeh Hamidi-Sepehr , Sergey Panteleev , Gang Xiong , Alexey Vladimirovich Khoryaev , Mikhail Shilov , Sergey Sosnin , Andrey Chervyakov
Abstract: Embodiments of a User Equipment (UE), Generation Node-B (gNB) and methods of communication are disclosed herein. The UE may attempt to decode sidelink synchronization signals (SLSSs) received on component carriers (CCs) of a carrier aggregation. In one configuration, synchronization resources for SLSS transmissions may be aligned across the CCs at subframe boundaries in time, restricted to a portion of the CCs, and restricted to a same sub-frame. The UE may, for multiple CCs, determine a priority level for the CC based on indicators in the SLSSs received on the CC. The UE may select, from the CCs on which one or more SLSSs are decoded, the CC for which the determined priority level is highest. The UE may determine a reference timing for sidelink communication based on the one or more SLSSs received on the selected CC.
-
公开(公告)号:US10917903B2
公开(公告)日:2021-02-09
申请号:US15324530
申请日:2015-08-07
Applicant: Apple Inc.
Inventor: Sergey Panteleev , Sergey Sosnin , Alexey Vladimirovich Khoryaev , Debdeep Chatterjee
Abstract: Embodiments of a User Equipment (UE) and methods for device-to-device (D2D) communication are generally described herein. In some embodiments, the UE may transmit a scheduling assignment (SA) control message that indicates time transmission intervals (TTIs) to be used for a D2D transmission of a data payload by the UE to a receiving UE during an SA cycle. The UE may transmit the data payload during the TTIs indicated in the SA control message. The TTIs used for the transmission of the data payload may be included in a group of D2D TTIs reserved for D2D transmissions. In some embodiments, a time resource pattern for transmission (T-RPT) may indicate a sequence of TTI indexes for the TTIs used for the transmission of the data payload.
-
公开(公告)号:US20200344709A1
公开(公告)日:2020-10-29
申请号:US16869830
申请日:2020-05-08
Applicant: APPLE INC.
Inventor: Alexey Khoryaev , Andrey Chervyakov , Sergey Panteleev , Dmitry Belov , Sergey Sosnin
Abstract: Cellular (e.g., LTE or UMTS) and global navigation satellite system (GNSS) based technologies can provide ubiquitous and seamless synchronization solution for LTE-based vehicle to everything (V2X) or Proximity Services synchronization (ProSe) services. For example, by using joint GNSS timing references and LTE cellular network timing references for V2X or ProSe system synchronization benefits of using GNSS technologies to improve synchronization procedure for LTE based V2X or ProSe services can be enabled, including: (1) accurate and stable timing, (2) availability of a global and stable timing reference and (3) ability to propagate GNSS timing by user equipment having sufficient GNSS signal quality.
-
-
-