Abstract:
Methods and apparatus for an orientation insensitive speed sensor. Magnetic field sensing elements can be located on a circle, for example, to generate first and second channel signals which can be combined to generate an output signal. The location of the magnetic field sensing elements reduces the effects of stray fields. Embodiments can include true power own state processing to determine target position during start up.
Abstract:
A magnetic field sensor includes one or more magnetic field sensing elements and a back-biased magnet arranged to avoid saturation of the one or more magnetic field sensing elements, particularly when the one or more magnetic field sensing elements comprise one or more magnetoresistance elements. The one or more magnetoresistance elements can be arranged in a resistor bridge.
Abstract:
Systems, methods, and apparatuses for magnetic field sensors with self-test include a detection circuit to detect speed and direction of a target. One or more circuits to test accuracy of the detected speed and direction may be included. One or more circuits to test accuracy of an oscillator may also be included. One or more circuits to test the accuracy of an analog-to-digital converter may also be included. Additionally, one or more IDDQ and/or built-in-self test (BIST) circuits may be included.
Abstract:
A magnetic field sensor including at least one magnetic field sensing element configured to generate a magnetic field signal indicative of a magnetic field associated with a target and a detector responsive to the magnetic field signal and to a threshold level to generate a sensor output signal containing transitions associated with features of the target in response to the magnetic field signal crossing the threshold level further includes a threshold generator to generate an adaptive threshold. The threshold generator is configured to generate the threshold level to achieve a predetermined fixed hard offset and that adapts with a variation in the airgap in order to minimize an error between times or angles of the transitions of the sensor output signal over the variation in the airgap.
Abstract:
Methods and apparatus for a magnetic field sensor for measuring movement of a target including a substrate and a magnet. A first bridge structure has first and second pluralities of magnetic field sensing elements spaced from each other. An axis of sensitivity of the magnetic field sensing elements is rotated at a predetermined angle with respect to an axis of rotation of the target to generate an output signal corresponding to the position of the target and a change in a property of the magnetic field generated by the magnet.
Abstract:
A magnetic field sensor includes a plurality of magnetic field sensing elements configured to generate at least two measured magnetic field signals indicative of a magnetic field affected by an object and having a first predetermined phase difference with respect to each other and a controller responsive to the at least two measured magnetic field signals. The controller is configured to generate at least one virtual magnetic field signal having a second predetermined phase difference with respect to at least one of the measured magnetic field signals. In embodiments, the virtual magnetic field signal has the second predetermined phase difference with respect to each of the at least two measured magnetic field signals.
Abstract:
A magnetic field sensor for determining a position of a magnet, the position identified by one or more position variables can include: one or more magnetic field sensing element operable to generate one or more magnetic field measurements of the magnet and an associated one or more measured magnetic field variable values; a first module for identifying calculated magnetic field variable values associated with a plurality of positions of the magnet; a second module operable to perform an optimization process to determine a value of a distance function, the distance function using the one or more measured magnetic field variable values and the calculated magnetic field variable values; and a third module operable to determine the position of the magnet by associating the value of the distance function with corresponding values of the one or more position variables. A complimentary method can be used in the magnetic field sensor.
Abstract:
A magnetic field sensor for detecting motion of an object includes magnetic field sensing elements to generate at least two phase-separated magnetic field signals and a processor including a vector angle generator to generate vector angle values as a function of the magnetic field signals and a vector angle comparator to generate a comparator output signal indicative of a difference between a plurality of vector angle values. An output signal generator responsive to the comparator output signal is configured to generate a sensor output signal indicative of a one or more conditions of motion of the object including: an absence of normal rotation, a direction change, and a vibration. In some embodiments, the vector angle comparator may generate a comparator output signal indicative of a comparison of a vector angle value and one or more threshold values. In this case, the output signal generator may be configured to generate a sensor output signal indicative of a speed of motion and/or a position of the object.
Abstract:
A magnetic field sensor that provides target speed and direction detection that is independent of sensor-to-target orientation includes at least three differential channels, each responsive to a pair of magnetic field sensing elements to generate a respective magnetic field channel signal. A combining element is configured to generate a combined signal based on the first, second, and third magnetic field channel, signals and control circuitry responsive to the combined signal and to at least one of the first, second, and third magnetic field channel signals generates a sensor output signal that indicative of target speed and direction.
Abstract:
Described embodiments provide a magnetic field sensor has a circular vertical Hall (CVH) sensing element with a plurality of vertical Hall elements disposed over a common implant region in a substrate. The magnetic field sensor generates output signals responsive to a magnetic field generated by a multi-pole magnet having a plurality of north poles and also a plurality of south poles. An angle sensor generates an angle signal representative of an angle of a direction component of the magnetic field. A pole pair counter generates a count signal representative of a count of a number of the pole pairs of the multi-pole magnet that move past the CVH sensing element. An angle interpolation module generates a reconstructed angle signal representative of an angular position of the multi-pole magnet relative to the CVH sensing element based upon the count signal and the angle signal. Corresponding methods are also described.