摘要:
Satellite positioning system (SATPS) receiver that has a plurality of modes and channels, where a timeline module configures the channels based on the mode of operation of the SATPS receiver and reconfigures the channels if the mode of operation of the SATPS changes.
摘要:
Systems and methods for detecting a vehicle static condition are provided. In this regard, a representative system includes a sensor operative to detect at least one of acceleration and angular rate of a vehicle. The sensor is further operative to generate a vehicle vibration profile based on the at least one of the detected acceleration and angular rate of the vehicle. The system further includes a computing device operative to receive the vehicle vibration profile from the sensor, the computing device being further operative to determine whether the vehicle is stationary or moving based on the vehicle vibration profile. A representative method for detecting a vehicle static condition includes detecting at least one of acceleration and angular grade of a vehicle; generating a vehicle vibration profile based on at least one of the detected acceleration and angular grade of the vehicle; receiving the vehicle vibration profile; and determining whether the vehicle is stationary or moving based on the vehicle vibration profile.
摘要:
Synchronizing a Radio Network with End User Radio Terminals A Mobile Station that is able to receive GPS signals and compare the frequency of the GPS received time signal with a time signal from a network in order to determine the difference between the signals and communicate that difference back to the network.
摘要:
In one embodiment, a system is provided that is operable to: predict satellite states using historical satellite state data for at least one satellite of a satellite-based positioning system; derive sets of parameters representative of the predicted satellite states; differentially compress the sets parameters into sets of compressed parameters; transmit the sets of compressed parameters to a client device over a first communication channel; uncompress the sets of compressed parameters into sets of recovered parameters; selectively reconstruct at least one reconstructed satellite state in the client device using the sets of recovered parameters; and determine the position of the client device using the at least one reconstructed satellite state along with timing information of satellite data received over a second communication channel.
摘要:
A method for GPS navigation which uses an interacting multiple-model (IMM) estimator with a probabilistic data association filter (PDAF) improves navigation performance. The method includes (a) providing two or more models of GPS navigation, with each model characterized by a model state vector which is updated periodically, (b) providing for each model a corresponding filter for deriving, for each period, a current value for the corresponding model state vector based on current measurements made on parameters affecting the corresponding state vector; and (c) applying an interacting multiple model (IMM) estimator to provide, for each period, a current value for a system state vector using the current values of the model state vectors for that period and their corresponding filters. Each model state vector may include one or more of the following: variables: 3-dimensional position, 3-dimensional velocity, satellite clock bias, satellite clock drifts and one or more other satellite parameters. The current value of the system state vector may be a weighted average of the current values of the model state vectors, where the weights are a set of mode probabilities. In addition, one or more of the filters is a probabilitic data association filter (PDAF).
摘要:
Systems and methods for detecting a vehicle static condition are provided. In this regard, a representative system includes a sensor operative to detect at least one of acceleration and angular rate of a vehicle. The sensor is further operative to generate a vehicle vibration profile based on the at least one of the detected acceleration and angular rate of the vehicle. The system further includes a computing device operative to receive the vehicle vibration profile from the sensor, the computing device being further operative to determine whether the vehicle is stationary or moving based on the vehicle vibration profile. A representative method for detecting a vehicle static condition includes detecting at least one of acceleration and angular grade of a vehicle; generating a vehicle vibration profile based on at least one of the detected acceleration and angular grade of the vehicle; receiving the vehicle vibration profile; and determining whether the vehicle is stationary or moving based on the vehicle vibration profile.
摘要:
In one embodiment, a system is provided that is operable to: predict satellite states using historical satellite state data for at least one satellite of a satellite-based positioning system; derive sets of parameters representative of the predicted satellite states; differentially compress the sets parameters into sets of compressed parameters; transmit the sets of compressed parameters to a client device over a first communication channel; uncompress the sets of compressed parameters into sets of recovered parameters; selectively reconstruct at least one reconstructed satellite state in the client device using the sets of recovered parameters; and determine the position of the client device using the at least one reconstructed satellite state along with timing information of satellite data received over a second communication channel.
摘要:
The invention relates to an aided Global Positioning System (GPS) subsystem within a wireless device. The wireless device includes a wireless processing section capable of receiving signals from a wireless network and a GPS subsystem having a radio frequency (RF) front-end capable of receiving a GPS satellite signal. The wireless processing section of the wireless device receives an external clock and determines the offset between the clock in the wireless processing section and that of the external clock. The GPS subsystem then receives the offset information from the wireless processing section, information related to the nominal frequency of the wireless processing section clock and the wireless processing section clock. Using this information and the GPS clock in the GPS subsystem, the GPS subsystem determines an acquiring signal, which is related to a frequency offset between the GPS clock and the network clock. The GPS subsystem then acquires GPS satellite signals in an acquiring unit though the use of the acquiring signal.