摘要:
In one embodiment, egress provider edge devices (PEs) send advertisements to ingress PEs for address prefixes of a first multi-homed customer network that desires path diversity through a service provider network to a second customer network. A first ingress PE receives the advertisements, and determines whether a second ingress PE is multi-homed with the first ingress PE to the second customer network. If so, the first ingress PE computes a plurality of diverse paths within the service provider network from the first and second multi-homed ingress PEs to a corresponding egress PE. If a plurality of diverse paths exists, the first ingress PE employs one of those paths to establish a first tunnel from itself to a first egress PE, and the second ingress PE employs another of the paths to establish a second tunnel from itself to a second egress PE that is diverse from the first tunnel.
摘要:
A technique enables Traffic Engineering (TE) on paths between customer edge devices (CEs) across a provider network (“CE-CE paths”) in a computer network. According to the novel technique, TE is configured on a link from a sending provider edge device (PE) to a first CE (“PE-CE link”), e.g., a CE of one or more virtual private networks (VPNs). The sending PE conveys TE information of the PE-CE link to one or more receiving PEs in the provider network. Upon receiving the TE information, each receiving PE expands a TE database (TED) for information regarding the provider network (i.e., a “core TED”) to include TE-configured PE-CE links, e.g., by updating one or more corresponding VPN TEDs (VTEDs) for each VPN maintained by the receiving PE. Once the receiving PEs have the TE information for configured PE-CE links from the provider network, one or more TE techniques may be applied to paths from a second CE of the receiving PE to the first CE (a CE-CE path) to thereby facilitate, e.g., establishment of TE-LSPs along CE-CE paths.
摘要:
In one embodiment, distributed path computation elements (PCEs) collaboratively build local portions of an inter-domain P2MP path to each path destination or to each ingress border router of one or more respective successor domains based on a cost associated with using one or more local ingress border routers received from each predecessor domain. Once a furthest destination is reached, each PCE may recursively return a list of local ingress border routers used in the P2MP path to each predecessor domain, where each PCE receiving the list correspondingly prunes segments of its computed local portion of the P2MP path that lead to unused successor ingress border routers, and sends a prune message to its predecessor domains accordingly. A root PCE receives the final prune message(s) and a representation of each locally computed portion of the inter-domain P2MP path, and combines the portions into a final inter-domain P2MP path.
摘要:
A local fast reroute (FRR) technique is implemented at the edge of a computer network. In accordance with the technique, if an edge device detects a node or link failure that prevents it from communicating with a neighboring routing domain, the edge device reroutes at least some data packets addressed to that domain to a backup edge device which, in turn, forwards the packets to the neighboring domain. The rerouted packets are designated as being “protected” (i.e., rerouted) data packets before they are forwarded to the backup edge device. The backup edge device identifies protected data packets as those which contain a predetermined “service” label in their MPLS label stacks. In other words, the service label is used as an identifier for packets that have been FRR rerouted. Upon receiving a data packet containing a service label, the backup edge device is not permitted to reroute the packet a second time, e.g., in response to another inter-domain node or link failure, thereby preventing loops from developing at the edge of the network.
摘要:
In one embodiment, an inter-domain routing protocol stores an inter-domain routing protocol route having an associated next-hop address. A routing table is searched for an for an intra-domain routing protocol route that may be used to reach the next-hop address of the inter-domain routing protocol route. Such route is marked as an important route for convergence. Later, in response to a change in the network requiring a routing table update, the intra-domain routing protocol route marked as an important route for convergence is processed by an intra domain routing protocol before any other intra-domain routing protocol routes are processed that are not marked as important routes for convergence.
摘要:
A technique propagates reachability information for a tail-end node of a traffic engineering (TE) label switched path (LSP) to a head-end node of the TE-LSP in a computer network. The TE-LSP preferably spans multiple domains of the network such that the tail-end node resides in a domain that is different (remote) from the domain of the head-end node. The inter-domain information propagation technique employs an Interior Gateway Protocol (IGP) to transmit the remote reachability information from a target node residing in the same domain as the tail-end node to the head-end node. The head-end node uses the remote information to calculate routes, i.e., address prefixes and associated attributes, reachable from the tail-end node for insertion into its routing table.
摘要:
A technique gracefully shuts down network resources, such as nodes, interfaces and protocols, in a data network in a manner that minimizes network disruption. The technique may be used with both connectionless and connection-oriented networking systems. A node gracefully shuts down a network resource associated with the node by i) notifying other nodes in the network that the resource is being gracefully shutdown, ii) waiting for a condition to occur, and iii) when the condition occurs, shutting down the resource. The condition may include the expiration of a predetermined amount of time and/or monitoring the resource to determine if the resource has reached a certain level of activity. In response to receiving a notification that a resource is being gracefully shutdown, a node takes action to reroute traffic around the resource. If no alternative route is available, the node may continue to route traffic to the resource until it is shut down.
摘要:
A technique configures an intermediate network node to automatically determine whether a route advertised by a routing protocol is important for fast convergence in a computer network. As used herein, an important route needed for fast convergence is a route advertised by the routing protocol, such as an exterior gateway routing protocol, as a next-hop address, since external connectivity relies on such a route. A routing information base process executing on the node stores the advertised route and, notably, interacts with an interior gateway routing protocol (IGP) process executing on the node to identify the route as an important route. Identification of an important route, in turn, allows IGP to process the route in a high priority fashion, thereby facilitating fast convergence.
摘要:
In one embodiment, service routers may register their serviced VPNs with a service directory/broker (SDB), and edge routers may register their attached VPNs. The SDB may then return service headers, each corresponding to a particular VPN, and also returns an address of a service router corresponding to each service header to the edge routers. An edge router may then push an appropriate service header onto a received packet, and forward the packet to the corresponding service router, which forwards the packet based on a maintained VRF for a VPN according to the service header (e.g., thus the edge routers need only maintain limited/reduced VRFs). Also, services provided by the service routers may be distinguished using service headers accordingly. In this manner, the edge routers may forward packets requiring one or more desired services to service routers configured to perform such services.
摘要:
In one embodiment, a primary head-end node (PHE) and one or more backup head-end nodes (BHEs) receive traffic from a common multicast network. The PHE establishes a primary point-to-multipoint (P2MP) tunnel and forwards the multicast traffic onto the primary P2MP tunnel. The PHE then notifies a selected BHE of one or more characteristics of the primary P2MP tunnel, and the selected BHE establishes a backup P2MP tunnel with the characteristics of the primary P2MP tunnel. In response to detecting a failure of the PHE, the BHE initiates forwarding of the multicast traffic onto the backup P2MP tunnel.