Abstract:
The present invention provides a method and system for an innovative design of the automatic stabilization and pointing control of a device based on the MEMS technology, which is small enough and has acceptable accuracy to be integrated into many application systems, such as, laser pointing systems, telescopic systems, imaging systems, and optical communication systems. The stabilization mechanism configuration design is based on utilization of AGNC commercial products, the coremicro IMU and the coremicro AHRS/INS/GPS Integration Unit. The coremicro AHRS/INS/GPS Integration Unit is used as the processing platform core for the design of the MEMS coremicro IMU based stabilization mechanism.
Abstract translation:本发明提供了一种用于基于MEMS技术的设备的自动稳定和指向控制的创新设计的方法和系统,该MEMS技术足够小并且具有可接受的精度被集成到许多应用系统中,例如激光指向系统 伸缩系统,成像系统和光通信系统。 稳定机构配置设计是基于AGNC商用产品,核心IMU和核心AHRS / INS / GPS集成单元的利用。 核心微型AHRS / INS / GPS集成单元用作基于MEMS芯片IMU的稳定机制设计的处理平台核心。
Abstract:
The design of the low cost GPS/IMU positioning and data integrating method, which employs integrated global positioning system/inertial measurement unit enhanced with dual antenna GPS carrier phase measurements to initialize and stabilize the azimuth of the low cost GPS/IMU integrated system, is performed. The utilization of the raw carrier phase measurement for the integration speeds up the ambiguity search.
Abstract:
A method and system for collision avoidance, carried by each aircraft, includes a miniature MEMS (MicroElectroMechanical Systems) IMU (Inertial Measurement Unit), a miniature GPS (Global Positioning System) receiver, a display, a data link receiver/transmitter, and a central processing system. Each aircraft carries a GPS receiver coupled with a self-contained miniature IMU for uninterrupted position determination. This position information is shared with other aircraft over an RF (Radio Frequency) data link. An intelligent display shows the relative positions of the aircraft in the immediate vicinity of the host aircraft and issues voice and flashing warnings if a collision hazard exists. This system provides situational awareness to the pilot and enhances the safety of flight.
Abstract:
A vehicle self-carried positioning system, carried in a vehicle, includes an inertial measurement unit, a north finder, a velocity producer, a navigation processor, a wireless communication device, and a display device and map database. Output signals of the inertial measurement unit, the velocity producer, and the north finder are processed to obtain highly accurate position measurements of a vehicle on land and in water, and the vehicle position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the vehicle position information.
Abstract:
A coupled real-time GPS/IMU simulation method with differential GPS includes the steps of receiving real-time trajectory data from a 6DOF trajectory generator and generating GPS simulated measurements (rover and reference) and inertial measurement unit simulated electronic signals based on the real GPS models and IMU models, respectively, and injecting those simulated data into an on-board integrated GPS/INS (global positioning system/inertial navigation system). Therefore, the coupled real-time GPS/IMU simulation method with differential GPS can be applied to evaluate the performance of the integrated GPS/INS in the area of high accuracy positioning in addition to the regular evaluation (one receiver mode).
Abstract:
The present invention provides a digital signal processing method and system thereof for producing precision platform orientation measurements and local Earth's magnetic measurements by measuring threes axes gravity acceleration digital signals by an acceleration producer, detecting Earth's magnetic field vector measurement by an Earth's magnetic field detector to achieve digital three-axes Earth's magnetic field vector signals, and producing pitch, roll, and heading angles using said three-axes gravity acceleration digital signals and said digital three-axes Earth magnetic field vector signals by a Digital Signal Processor (DSP) chipset.
Abstract:
A vehicle self-carried positioning system, carried in a vehicle, includes an inertial measurement unit, a north finder, a velocity producer, a navigation processor, a wireless communication device, and a display device and map database. Output signals of the inertial measurement unit, the velocity producer, and the north finder are processed to obtain highly accurate position measurements of a vehicle on land and in water, and the vehicle position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the vehicle position information.
Abstract:
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
Abstract:
A passive/ranging/tracking processing method provides information from passive sensors and associated tracking control devices and GPS/IMU integrated navigation system, so as to produce three dimensional position and velocity information of a target. The passive/ranging/tracking processing method includes the procedure of producing two or more sets of direction measurements of a target with respect to a carrier, such as sets of elevation and azimuth angles, from two or more synchronized sets of passive sensors and associated tracking control devices, installed on different locations of the carrier, computing the range vector measurement of the target with respect to the carrier using the two or more sets of direction measurements, and filtering the range vector measurement to estimate the three-dimensional position and velocity information of the target.
Abstract:
The present invention relates generally to a geospatial database access and query method, and more particularly to a map and Inertial Measurement Unit/Global Positioning System (IMU/GPS) navigation process. With the location information provided by an IMU/GPS integrated system, the geospatial database operations, such as database access and query, are sped up. With the map data from a geospatial database, the navigation performance and accuracy are enhanced. The present invention also supports real time mapping by using IMU/GPS integrated system as the positioning sensor.