Abstract:
A real time kernel for deploying health monitoring functions in Condition Base Maintenance (CBM) and Real Time Monitoring (RTM) systems is disclosed in this invention. The Optimized Neuro Genetic Fast Estimator (ONGFE) allows embedding failure detection, identification, and prognostics (FDI&P) capability by using Intelligent Software Element (ISE) based upon Artificial Neural Network (ANN). ONGFE enables embedded fast and on-line training for designing ANNs, which perform very high performance FDI&P functions. An advantage is the optimization block based on pseudogenetic algorithms, which compensate for effects due to initial weight values and local minimums without the computational burden of genetic algorithms. It provides a synchronization block for communication with secondary diagnostic modules. Also a scheme for conducting sensor data validation is embedded in Smart Sensors (SS). The algorithms are designed for a distributed, scalar, and modular deployment. The system electronics is built upon a network of smart sensors and a health monitoring computer for providing data acquisition capability and distributed computational power.
Abstract:
This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.
Abstract:
A platform residing viewing sensor and a pointing system/weapon. An operator system is remotely monitoring the scene on a display as viewed by the viewing sensor such that an operator system can gaze, acquire and track targets by scanning the scene with eyes and locking the eyesight onto a selected target and track the target with the eyes. The system further includes a dual camera sensor that follows and monitors the operator system's eyes motion so that the operator system can simultaneously monitor the external viewing sensor's scene, locking and tracking some selected target. The display coordinates of the selected target are utilized to point the pointing system/weapon on the external platform so that the operator system can fire at the target as desired. The problem is thus summarized as one of controlling the weapon pointing, movement and firing on a target that has been selected and is tracked by the eyes of an operator system viewing a display.
Abstract:
A self-contained/interruption-free earth's surface positioning method and system, carried by a user on the earth's surface, includes an inertial measurement unit, a north finder, a velocity producer, an altitude measurement device, a GPS (Global Positioning System) receiver, a data link, a navigation processor, a wireless communication device, and a display device and map database. Output signals of the inertial measurement unit, the velocity producer, altitude measurement device, the GPS receiver, the data link, and the north finder are processed to obtain highly accurate position measurements of the user. The user's position information can be exchanged with other users through the wireless communication device, and the location and surrounding information can be displayed on the display device by accessing a map database with the user position information.
Abstract:
The present invention relates generally to a geospatial database access and query method, and more particularly to a map and Inertial Measurement Unit/Global Positioning System (IMU/GPS) navigation process. With the location information provided by an IMU/GPS integrated system, the geospatial database operations, such as database access and query, are sped up. With the map data from a geospatial database, the navigation performance and accuracy are enhanced. The present invention also supports real time mapping by using IMU/GPS integrated system as the positioning sensor.
Abstract:
A filtering process is adapted for eliminating the need of prediscretizing a continuous-time differential model into a discrete-time difference model. It provides a universal robust solution to the most general formulation, in the sense that the system dynamics are described by nonlinear continuous-time differential equations, and the nonlinear measurements are taken at intermittent discrete times randomly spaced. The filtering process includes the procedures of validating the measurement using fuzzy logic, and incorporating factorized forward filtering and backward smoothing to guarantee numerical stability. It provides users a reliable and convenient solution to extracting internal dynamic system state estimates from noisy measurements, with wider applications, better accuracy, better stability, easier design, and easier implementation.
Abstract:
A system for universal guidance and control of automated machines incorporates with an IMU (Initial Measuring Unit) installed at an end effector of a motion element of an automated machine, fast-response feedback control for both position and angle servo-loops (for the end effector) greatly decreases the operational time needed to complete a preplanned trajectory. In addition, the closed-control loop design provides stabilization and isolation of the end effector from external disturbances. This unique navigation solution is based upon the uses of a set of equations performing an open loop computation with the inertial data as its input. This formulation of equations requires a periodic update of the open loop solution in order to bind the growth of system errors. The source of this update is the automated machine position measurement derived from the mechanical sensors in the system.
Abstract:
The present invention relates to a process and system for three-dimensional (3D) relative positioning and tracking, utilizing a range image and reflectance image producer including a laser dynamic range imager (LDRI), wherein a complete suite of unique 3D relative positioning and tracking algorithms and processing methods, including cross plane correlation, subpixel tracking, focal length determination, Kalman filtering, and orientation determination, is employed to take full advantage of the range information and reflectance information provided by the LDRI to provide relative position and orientation of a target to simultaneously provide the 3-D motion of multiple points of a target without the necessity of using multiple cameras and specific targets and the relative attitude of the target with respect to a carrier of the LDRI.
Abstract:
A universal robust filtering process is adapted for eliminating the need of prediscretizing a continuous-time differential model into a discrete-time difference model. It provides a universal robust solution to the most general formulation, in the sense that the system dynamics are described by nonlinear continuous-time differential equations, and the nonlinear measurements are taken at intermittent discrete times randomly spaced. The universal robust filtering process includes the procedures of validating the measurement using fuzzy logic, and incorporating factorized forward filtering and backward smoothing to guarantee numerical stability. It provides users a reliable and convenient solution to extracting internal dynamic system state estimates from noisy measurements, with wider applications, better accuracy, better stability, easier design, and easier implementation.
Abstract:
A positioning method and system for water and land vehicles is disclosed for highly accurate and self-contained operation. In which, an inertial navigation system (INS) is built on the micro MEMS (MicroElectroMechanicalSystem) IMU that is the core of the position determination system. To compensate the error of the INS, multiple navigation sensors are integrated into the system. The magnetic sensor is used as a magnetic field sensor to measure the heading of the vehicle. The odometer is used to measure the distance when the vehicle is on land. An automated Zero velocity updating method is used to calibrate the ever increasing INS errors. When the vehicle is in the water, a velocimeter is used to measure water speed for the INS aiding.