Abstract:
At an audio encoder, cue codes are generated for one or more audio channels, wherein an envelope cue code is generated by characterizing a temporal envelope in an audio channel. At an audio decoder, E transmitted audio channel(s) are decoded to generate C playback audio channels, where C>E≧1. Received cue codes include an envelope cue code corresponding to a characterized temporal envelope of an audio channel corresponding to the transmitted channel(s). One or more transmitted channel(s) are upmixed to generate one or more upmixed channels. One or more playback channels are synthesized by applying the cue codes to the one or more upmixed channels, wherein the envelope cue code is applied to an upmixed channel or a synthesized signal to adjust a temporal envelope of the synthesized signal based on the characterized temporal envelope such that the adjusted temporal envelope substantially matches the characterized temporal envelope.
Abstract:
An auditory scene is synthesized from a mono audio signal by modifying, for each critical band, an auditory scene parameter (e.g., an inter-aural level difference (ILD) and/or an inter-aural time difference (ITD)) for each sub-band within the critical band, where the modification is based on an average estimated coherence for the critical band. The coherence-based modification produces auditory scenes having objects whose widths more accurately match the widths of the objects in the original input auditory scene.
Abstract:
An apparatus for generating a multi-channel output signal performs a center channel cancellation to obtain improved base channels for reconstructing left-side output channels or right-side output channels. In particular, the apparatus includes a cancellation channel calculator for calculating a cancellation channel using information related to the original center channel available at the decoder. The device furthermore includes a combiner for combining a transmission channel with the cancellation channel. Finally, the apparatus includes a reconstructor for generating the multi-channel output signal. Due to the center channel cancellation, the channel reconstructor not only uses a different base channel for reconstructing the center channel but also uses base channels different from the transmission channels for reconstructing left and right output channels which have a reduced or even completely cancelled influence of the original center channel.
Abstract:
A scheme for stereo and multi-channel synthesis of inter-channel correlation (ICC) (normalized cross-correlation) cues for parametric stereo and multi-channel coding. The scheme synthesizes ICC cues such that they approximate those of the original. For that purpose, diffuse audio channels are generated and mixed with the transmitted combined (e.g., sum) signal(s). The diffuse audio channels are preferably generated using relatively long filters with exponentially decaying Gaussian impulse responses. Such impulse responses generate diffuse sound similar to late reverberation. An alternative implementation for reduced computational complexity is proposed, where inter-channel level difference (ICLD), inter-channel time difference (ICTD), and ICC synthesis are all carried out in the domain of a single short-time Fourier transform (STFT), including the filtering for diffuse sound generation.
Abstract:
A method for determining an output stereo signal comprising determining a first differential signal and determining a second differential signal; determining a first power spectrum based on the first differential signal and determining a second power spectrum based on the second differential signal; determining a first weighting function and a second weighting function as a function of the first power spectrum and the second power spectrum; and filtering a first signal, which represents a first combination of the first input audio channel signal and the second input audio channel signal, and filtering a second signal, which represents a second combination of the first input audio channel signal and the second input audio channel signal.
Abstract:
A method for determining an output stereo signal comprising determining a first differential signal and determining a second differential signal; determining a first power spectrum based on the first differential signal and determining a second power spectrum based on the second differential signal; determining a first weighting function and a second weighting function as a function of the first power spectrum and the second power spectrum; and filtering a first signal, which represents a first combination of the first input audio channel signal and the second input audio channel signal, and filtering a second signal, which represents a second combination of the first input audio channel signal and the second input audio channel signal.
Abstract:
An apparatus for generating an enhanced downmix signal on the basis of a multi-channel microphone signal has a spatial analyzer configured to compute a set of spatial cue parameters having a direction information describing a direction-of-arrival of a direct sound, a direct sound power information and a diffuse sound power information on the basis of the multi-channel microphone signal. The apparatus also has a filter calculator for calculating enhancement filter parameters in dependence on the direction information describing the direction-of-arrival of the direct sound, in dependence on the direct sound power information and in dependence on the diffuse sound power information. The apparatus also has a filter for filtering the microphone signal, or a signal derived therefrom, using the enhancement filter parameters, to obtain the enhanced downmix signal.
Abstract:
An embodiment of an apparatus for computing control information for a suppression filter for filtering a second audio signal to suppress an echo based on a first audio signal includes a computer having a value determiner for determining at least one energy-related value for a band-pass signal of at least two temporally successive data blocks of at least one signal of a group of signals. The computer further includes a mean value determiner for determining at least one mean value of the at least one determined energy-related value for the band-pass signal. The computer further includes a modifier for modifying the at least one energy-related value for the band-pass signal on the basis of the determined mean value for the band-pass signal. The computer further includes a control information computer for computing the control information for the suppression filter on the basis of the at least one modified energy-related value.
Abstract:
A method and apparatus are disclosed for controlling a buffer in a digital audio broadcasting (DAB) communication system. The transmitter predicts the number of encoded frames, Fpred, in the buffer having a limited level and transmits the value, Fpred, to the receiver with the frame. If the transmitter determines that the decoder buffer level is high, the frames being generated by the encoder are small and additional bits are allocated to each frame for each of the N programs. Likewise, if the transmitter determines that the decoder buffer level is becoming low, the frames being generated by the encoder are big and fewer bits are allocated to each frame for each of the N programs. The transmitted predicted buffer level, Fpred, can also be employed to (i) determine when the decoder should commence decoding frames; and (ii) synchronize the transmitter and the receiver clock using feedback depending on the compared level of the decoder to the actual level to Fpred.
Abstract:
A system and method for use in filtering of an acoustic signal are provided for producing an output signal of attenuated amount of diffuse sound in accordance with predetermined parameters of desired output directional response and required attenuation of diffuse sound. The system includes a filtration module and a filter generation module including a directional analysis module and filter construction module.