Abstract:
Pixel data of a video sequence with enhanced dynamic range (EDR) are predicted based on pixel data of a corresponding video sequence with standard dynamic range (SDR) and a piecewise inter-layer predictor. The output parameters of the piecewise predictor are computed based atleast on two sets of pre-computed values and a prediction cost criterion. The first set of pre-computed values applies to all input SDR frames and comprises a set of SDR pixel values raised to one or more integer power terms. The second set of pre-computed values is frame specific and is computed based on a histogram of an input SDR frame and pixel values of the corresponding EDR frame. The pre-computed values allow for a fast iterative algorithm to identify the best pivot points for the piecewise polynomials according to a prediction cost and to solve for the coefficients of the piecewise predictor.
Abstract:
Sample data and metadata related to spatial regions in images may be received from a coded video signal. It is determined whether specific spatial regions in the images correspond to a specific region of luminance levels. In response to determining the specific spatial regions correspond to the specific region of luminance levels, signal processing and video compression operations are performed on sets of samples in the specific spatial regions. The signal processing and video compression operations are at least partially dependent on the specific region of luminance levels.
Abstract:
A multi-layer video system has a first layer encoder that encodes a first layer of video information, at least one second layer encoder that encodes at least one second layer of video information, and an encoder side reference processing unit (RPU) that estimates one or more of an optimal filter or an optimal process that applies on a reference picture that is reconstructed from the first video information layer, and processes a current picture of the second video information layer, based on a correlation between the first layer reconstructed reference picture. The correlation relates to a complexity characteristic that scaleably corresponds to the first video information layer reconstructed reference picture and the second video information layer current picture. A scalable video bitstream is outputted, which may be decoded by a compatible decoder. A decoder side RPU and the encoder side RPU function as an RPU pair.
Abstract:
Coding syntaxes in compliance with same or different VDR specifications may be signaled by upstream coding devices such as VDR encoders to downstream coding devices such as VDR decoders in a common vehicle in the form of RPU data units. VDR coding operations and operational parameters may be specified as sequence level, frame level, or partition level syntax elements in a coding syntax. Syntax elements in a coding syntax may be coded directly in one or more current RPU data units under a current RPU ID, predicted from other partitions/segments/ranges previously sent with the same current RPU ID, or predicted from other frame level or sequence level syntax elements previously sent with a previous RPU ID. A downstream device may perform decoding operations on multi-layered input image data based on received coding syntaxes to construct VDR images.