摘要:
A method and apparatus for controlling the transmit power of a mobile device in a mobile communication network takes the level of self-interference into account to perform inner-loop power control. For normal inner-loop power control, a signal quality estimate is compared to a signal quality target and power control commands are generated based on the comparison. When self-interference is the dominant impairment in the received signal, a “fast break” is introduced to change inner-loop power control command generation. The amount of self-interference is determined based on the delay spread of the channel.
摘要:
A mobile receiver having a multi-mode interference suppression function and a way to estimate its speed utilizes a parametric approach to interference suppression at high speeds, and a nonparametric approach at low speeds. In particular, if the mobile receiver is currently operating in a nonparametric mode and its speed exceeds a first predetermined threshold, the mobile receiver switches to a parametric mode. Conversely, if the mobile receiver is currently in parametric mode and its speed is less than a second predetermined threshold, the mobile receiver switches to nonparametric mode. In one embodiment, the speed may be estimated by a Doppler frequency in the received signal, and the thresholds are Doppler frequencies. In one embodiment, the first and second thresholds are different, creating a hysteresis in the mode switching.
摘要:
A signal-to-interference estimate is generated using unknown data symbols in place of or in addition to pilot symbols. Data received over a data channel (traffic channel or control channel) are collected. The data symbols are then used to compute an observation metric based on deviations of the data symbols from a predetermined set of possible data symbols, wherein one of the data symbols and symbol constellation is normalized. A data channel signal-to-interference ratio is then computed based on the observation metric.
摘要:
Teachings presented herein present a “whitening” channel estimation method and apparatus that produce high-quality net channel estimates for processing a received signal, such as a received CDMA signal. Processing includes forming an initial least squares problem (for medium channel estimates) using known pilot values and corresponding pilot observations for the received signal, transforming the initial least squares problem using a whitening transformation term, and solving the transformed least squares problem to obtain whitened medium channel estimates. The whitening transformation term may be determined, for example, by carrying out a Cholesky factorization of a (traffic) data correlation matrix, which can be obtained from traffic data values for the received signal. Processing further includes converting the whitened medium channel estimates into whitened net channel estimates, which consider the effects of transmit/receive filtering.
摘要:
Methods and apparatus for determining an impairment covariance matrix for use in an interference-suppressing CDMA receiver are disclosed. In several of the disclosed embodiments, precise information regarding signal propagation delays is not needed. An exemplary method includes the selection of a plurality of processing delays for processing a received CDMA signal. Net channel coefficients for the processing delays are estimated and used to calculate an impairment covariance matrix. The impairment covariance matrix is calculated as a function of the estimated net channel coefficients and the processing delays, without estimating a propagation medium channel response for the received signal.
摘要:
A wireless communication device includes a Generalized RAKE (G-RAKE) receiver circuit that is configured to determine a traffic-to-pilot gain scaling parameter as part of the impairment correlation determination process that underlies (G-RAKE) combining weight generation. In this manner, the receiver circuit conveniently and accurately accounts for gain differences between the pilot channel of a received CDMA signal, as used for channel estimation, and the traffic channel(s) of the CDMA signal, which carry received data to be recovered. The gain difference accounting enables proper demodulation of amplitude-modulated traffic signals. By way of non-limiting example, such gain scaling may be used for demodulating/decoding High Speed Downlink Packet Access (HSDPA) signals used in Wideband Code Division Multiple Access (W-CDMA) systems.
摘要:
Methods and apparatus for estimating code-reuse interference associated with a received multi-stream multiple-input multiple-output (MIMO) signal are disclosed. An estimate for the data-to-pilot power ratio, ΓD/P, may be obtained as a by-product of parametric estimation of impairment covariance associated with the received MIMO signal. In an exemplary method, a parametric impairment model is constructed for a received MIMO signal, the parametric model omitting code-reuse interference. Impairment covariance is measured, using, in one or more embodiments, received pilot symbol data. The parametric impairment model is fitted to the measured impairment covariance to obtain one or more scaling parameter values. A per-code energy value for a first data stream is then calculated from the one or more scaling parameter values. In some embodiments, the data-to-pilot power ratio for the received signal is first calculated from the one or more scaling parameters, and the per-code energy value calculated from the data-to-pilot power ratio.
摘要:
According to one embodiment taught herein, a method of determining impairment correlations between a plurality of delays of interest for a received CDMA signal comprises generating kernel functions as samples of a net channel response of the received CDMA signal taken at defined chip sampling phases for delay differences between the plurality of delays of interest. In a parametric Generalized Rake (G-Rake) receiver embodiment, the delays of interest represent the delay positions of the fingers being used to characterized received signal. In a chip equalizer receiver embodiment, the delays of interest represent the delay positions of the equalizer taps. The method continues with determining impairment correlations based on convolving the kernel functions. Corresponding receiver circuits, including an impairment correlation estimation circuit configured for parametric G-Rake operation, may be implemented in a variety of communication devices and systems, such as in wireless communication network base stations and mobile stations.