Abstract:
A method is disclosed to calculate combining weight vectors associated with a received composite information signal comprising at least one data stream transmitted from at least four antennae. The method starts with computing a parametric estimate of an impairment covariance matrix including at least a first impairment term associated with common pilots deployed by the antennae. The first impairment term captures effects of interferences of the common pilots. The impairment covariance matrix further includes a data covariance term capturing effects of the at least one data stream and an interference term caused at least partially by contribution of thermal noise of receiver branches. The impairment covariance matrix includes a second impairment term associated with at least one dedicated pilot. Then the method computes the combining weight vector using the computed impairment covariance matrix. A network device performs such method is also disclosed.
Abstract:
A method is disclosed to calculate combining weight vectors associated with a received composite information signal comprising at least one data stream transmitted from at least four antennae. The method starts with computing a parametric estimate of an impairment covariance matrix including at least a first impairment term associated with common pilots deployed by the antennae. The first impairment term captures effects of interferences of the common pilots. The impairment covariance matrix further includes a data covariance term capturing effects of the at least one data stream and an interference term caused at least partially by contribution of thermal noise of receiver branches. The impairment covariance matrix includes a second impairment term associated with at least one dedicated pilot. Then the method computes the combining weight vector using the computed impairment covariance matrix. A network device performs such method is also disclosed.
Abstract:
A multiple antenna receiver receives a wideband signal containing two or more sub-signals of interest. The receiver may be selectively configured to receive all sub-signals of interest with all antennas, or to receive different sub-signals of interest with different antennas.
Abstract:
The invention relates to the field of radio signal receivers for use in wireless communication networks. In particular to a receiver unit having at least one antenna input for receiving multipath radio signals via a radio unit and at least one antenna from one or more user equipments is provided. The receiver unit comprises: a despreading unit configured to despread a multipath radio signal in the received multipath radio signals using a number of despreading fingers corresponding to a number of delay positions in the multipath radio signal which corresponds to a number of paths in the multipath radio signal, and a combining unit configured to apply at least one weight to the output of each of the number of allocated despreading fingers and combine the weighted outputs into a resulting equalized radio signal. The receiver unit is characterized in that it is configured to calculate auto-correlation values based on all multipath radio signals received at the at least one antenna input, determine at least one auto-correlation value based on the calculated auto-correlation values, determine at least one time value based on the at least one determined auto-correlation value, and allocate at least one interference suppression finger to a delay position in the multipath radio signal based on the at least one determined time value. The invention further relates to a receiver, a network node and a method for suppressing interference in a received multipath radio signal in a receiver unit.
Abstract:
A method and apparatus for determining operating modes in a receiver is described herein. A delay searcher in the receiver detects a signal image in the received signal. When the receiver is a RAKE receiver, a plurality of RAKE fingers coherently combine time-shifted versions of the received signal at different delays. Alternatively, when the receiver is a chip equalization receiver, an FIR filter coherently pre-combines the signal images in the received signal. A processor determines delays. In particular, the processor generates a first signal quality metric for a single-delay receiver mode, and generates a second signal quality metric for a multi-delay receiver mode. Based on a comparison of the first and second signal quality metrics, the processor selects the single-delay or the multi-delay receiver mode for processing the signal image.
Abstract:
A receiver circuit provides improved noise estimation processing by at least partially removing receiver frequency error bias. An initial noise estimate is compensated using an error term based on the observed receiver frequency error, and the resulting compensated noise estimate can be used to improve other signal processing in the receiver. For example, the receiver may use compensated noise estimates to generate signal quality estimates, e.g., Signal-to-Interference (SIR) estimates, having improved accuracy. Additionally, or alternatively, the receiver may use the compensated noise estimates to generate RAKE combining weights having improved noise suppression characteristics. In an exemplary embodiment, the initial noise estimate is a noise correlation matrix generated from a received reference signal, e.g., pilot symbols, and the error term is an error matrix directly generated using the observed receiver frequency error and channel estimates taken from the reference signal.
Abstract:
A wireless communication receiver is configured to suppress interference with respect to a received signal of interest on a selective basis responsive to evaluating whether the receiver currently is or is not operating in a colored noise/interference environment. For example, an exemplary Code Division Multiple Access (CDMA) mobile station activates or deactivates interference suppression responsive to determining and evaluating an orthogonality factor, which, in this context, serves as a measure of how much downlink power gets converted into same-cell interference via multipath propagation. The orthogonality factor thus serves as an indicator of noise plus interference coloration. In one or more exemplary embodiments, then, an exemplary receiver circuit is configured to determine the orthogonality factor, evaluate it, and selectively enable or disable received signal whitening based on that evaluation. The exemplary receiver circuit and associated selective whitening method can be applied to various receiver architectures and signal types.
Abstract:
A method of calculating combining weight vectors associated with a received composite information signal comprising at least one data stream transmitted from at least a first antenna and a second antenna is disclosed. The method starts with computing a parametric estimate of an impairment covariance matrix including at least a first impairment term associated with common pilots deployed by the first antenna and the second antenna respectively. The first impairment term captures effects of interferences between the common pilots, in addition to effects of interferences caused by each common pilot singly. The impairment covariance matrix further includes a data covariance term capturing effects of the at least one data stream and an interference term caused at least partially by contribution of thermal noise of receiver branches. Then the method computes the combining weight vector using the computed impairment covariance matrix.
Abstract:
In a receive node of a wireless network, an iterative multi-user multi-stage interference cancellation receiver is used. After each stage of interference cancellation, interference characteristics change. An adaptive finger placement strategy is used in which after each stage of interference cancellation, finger delays and combining weights of the receiver are adapted to reflect the changed interference characteristics.
Abstract:
The computation of code-specific channel matrices for an Assisted Maximum Likelihood Detection (AMLD) receiver comprises separately computing high rate matrices that change each symbol period, and a low rate matrix that is substantially constant over a plurality of symbol periods. The high and low rate matrices are combined to generate a code-specific channel matrix for each receiver stage. The high rate matrices include scrambling and spreading code information, and the low rate matrices include information on the net channel response and combining weights. The low rate matrices are efficiently computed by a linear convolution in the frequency domain of the net channel response and combining weights (with zero padding to avoid circular convolution), then transforming the convolution to the time domain and extracting matrix elements. Where the combining weights are constant across stages, a common code-specific channel matrix may be computed and used in multiple AMLD receiver stages.