Abstract:
Provided are a circular polarization filter including a circularly-polarized light separating layer (preferably, a layer having a cholesteric liquid crystalline phase fixed therein or a laminate including a reflective linear polarizer and a λ/4 phase difference layer), in which the circularly-polarized light separating layer selectively transmits either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength region, a transparent medium which is transparent with respect to light in the specific wavelength region is provided at least on one surface side of the circularly-polarized light separating layer, and the transparent medium has an inclined surface which forms an angle of 1° to 30° relative to the surface on the transparent medium side of the circularly-polarized light separating layer, and sensor system using the circular polarization filter. The circular polarization filter of the invention is capable of providing circularly polarized light with a high circular polarizance, or improving sensitivity in the sensor system using circularly polarized light.
Abstract:
The present invention provides an illumination device which selectively radiates either one of right-circularly polarized light and left-circularly polarized light, comprising a reflective polarizing plate 1, a light source, and a reflective polarizing plate 2 in this order, and further comprising a retardation plate, wherein the reflective polarizing plate 1, the light source, and the reflective polarizing plate 2 are disposed such that polarized light reflected by the reflective polarizing plate 1 passes through the reflective polarizing plate 2 and polarized light reflected by the reflective polarizing plate 2 passes through the reflective polarizing plate 1, and phase difference and disposition of the retardation plate are adjusted such that the above either one of the circularly polarized lights is radiated toward both of a direction of the reflective polarizing plate 1 and a direction of the reflective polarizing plate 2 based on the light source. The illumination device of the present invention radiates either one of right-circularly polarized light and left-circularly polarized light with good energy efficiency.
Abstract:
The present invention provides an optical member including a reflection layer and an information presentation layer, the reflection layer comprising one or more circularly-polarized light reflection layers selected from the group consisting of a right circularly-polarized light reflection layer and a left circularly-polarized light reflection layer, the circularly-polarized light reflection layer consisting of a layer obtained by fixing a cholesteric liquid-crystalline phase, the reflection layer having a reflection wavelength at which a specular reflectance for non-polarized light is more than 20% in a wavelength region in which the circularly-polarized light reflection layer exhibits selective reflection, a diffuse reflectance for non-polarized light at the reflection wavelength less than 50%, the reflection wavelength being in an infrared wavelength region, and the information presentation layer having a pattern of a material that absorbs or reflects light of the reflection wavelength. The optical member can be used as a handwriting input sheet, which can be used by being stuck to the surface of a display.
Abstract:
Provided is an optical film which is resistant to repelling, bright dots, irregularity, and the use of such an optical film in a liquid crystal display leads to high front contrast, reduced grayscale inversion, and a reduced difference between a front image and an oblique image in grayscale reproducibility and color. The optical film including a first optically anisotropic layer; and a second optically anisotropic layer on the first optically anisotropic layer, wherein the first optically anisotropic layer is a layer of liquid crystal compounds aligned and fixed by polymerization, and the surface tilt angle of molecules of the liquid crystal compound is in a range of 5° to 80° at a site in contact with the second optically anisotropic layer.
Abstract:
The present invention provides an illuminating device that makes it possible to reduce the number of members for regulating a polarization state and can irradiate light having natural color shades without decreasing energy efficiency of light irradiation, and a plant growth regulation method using the illuminating device. The illuminating device of the present invention includes a light-emitting light source and a polarization state regulation member that regulates a polarization state of the light-emitting light source, in which the polarization state of a wavelength region of a portion of emission wavelengths is changed to circular polarization, and a degree of circular polarization of light in a wavelength band for regulation among the light rays to be irradiated is 0.3 or higher. In a preferable embodiment, a width of at least one wavelength band for regulation of the polarization state regulation member is from 60 nm to 250 nm.