摘要:
A steady-state condition for tipped nuclear spins is accelerated or catalyzed by first determining magnetization magnitude of the steady state and the scaling magnetization along one axis (Mz) to at least approximate the determined magnetization magnitude. Then the scaled magnetization is rotated to coincide with a real-valued eigenvector extension of the tipped steady-state magnetization. Any error vector will then decay to the steady-state condition without oscillation. In one embodiment, the magnetic resonance imaging utilizes steady-state free precession (SSFP). The scaling and rotating steps are followed by the steps of applying read-out magnetic gradients and detecting magnetic resonance signals from the tipped nuclear spins. The magnetization magnitude is determined by eigenvector analysis, and the eigenvector extension is a real-valued eigenvector determined in the analysis.
摘要:
A fast, spectrally-selective steady-state free precession (SSFP) imaging method is presented. Combining k-space data from SSFP sequences with certain phase schedules of radiofrequency excitation pulses permits manipulation of the spectral selectivity of the image. For example, lipid and water can be rapidly resolved. The contrast of each image depends on both T1 and T2, and the relative contribution of the two relaxation mechanisms to image contrast can be controlled by adjusting the flip angle. Several applications of the technique are presented, including fast musculoskeletal imaging, brain imaging, and angiography. The technique is referred to herein as linear combination steady-state free precession (LCSSFP) and fluctuating equilibrium magnetic resonance (FEMR).
摘要:
The present invention provides methods for adjustment of contrast of magnetic susceptibility variations where the variations cause distortions which are removed by view angle tilting. Often, magnetic susceptibility variations are caused by devices such as needles inserted into a patient. In two methods of the present invention, first and second field gradients are applied simultaneous with excitation and refocusing gradients, respectively. The first and second gradients have different amplitudes or orientations, or both. This results in fewer spins rephasing in the vicinity of the susceptibility variation than elsewhere, thereby providing contrast. In another embodiment of the invention, a spin echo is produced, and the detection time of the spin echo signal is offset from the time of the spin echo. The offset results in a phase cancellation of spins near the susceptibility variation due to the relatively large range of magnetic field strengths. Other methods of the present invention are also disclosed.
摘要:
Selective RF pulses are applied for segmented k-space imaging sequences with the tip-angle profiles of the pulses varying for stabilizing the entire signal profile and reducing ghosting and blurring artifacts in slice images.
摘要:
Measures of a velocity component during a plurality of time frames of cyclical motion of a region of interest are obtained using contrast cine MRI techniques. Trajectories of the region of interest are calculated in a backward direction and in a forward direction. The trajectories are then combined to define a motion trajectory. The forward and backward trajectories are weighted prior to combining with the forward trajectory being more heavily weighted for early frames and the backward trajectory being more heavily weighted for late frames.
摘要:
Disclosed is a method of generating a linear large tip-angle selective excitation pulse for magnetic resonance imaging using a linear Fourier transform analysis. An inherently refocused small tip-angle excitation pulse which produces a rotation about an axis is first defined. Then a sequence of the small tip-angle excitation pulses is produced and concatenated whereby the sum of the tip angles produced by the sequence of pulses results in a desired net large tip-angle. The small tip-angle pulses have a Hermitian RF weighted k-space trajectory. The tip angle is the Fourier transform of the weighted k-space trajectory.
摘要:
A method of obtaining multi-dimensional spatially-selective magnetic resonance signals from a body includes applying a static magnetic field (Bo) to said body thereby aligning nuclear spins along an axis (z), and applying one or more time-varying magnetic gradients (Gx(t), Gy(t), Gz(t)) during a time period, T. During the time period, T, an RF excitation pulse (B.sub.1) is applied to said body to tip said nuclear spins, said RF excitation pulse being related to said modulated magnetic gradients by a first spatial frequency weighting function (W(k)(t)) whereby magnetic resonance signals transmitted by said tipped nuclear spins are spatially selective in multi dimensions. The resulting magnetic resonance signals are then detected to provide the multi-dimensional spatially-selective signals.