摘要:
A fast, spectrally-selective steady-state free precession (SSFP) imaging method is presented. Combining k-space data from SSFP sequences with certain phase schedules of radiofrequency excitation pulses permits manipulation of the spectral selectivity of the image. For example, lipid and water can be rapidly resolved. The contrast of each image depends on both T1 and T2, and the relative contribution of the two relaxation mechanisms to image contrast can be controlled by adjusting the flip angle. Several applications of the technique are presented, including fast musculoskeletal imaging, brain imaging, and angiography. The technique is referred to herein as linear combination steady-state free precession (LCSSFP) and fluctuating equilibrium magnetic resonance (FEMR).
摘要:
A computer implemented method for magnetic resonance imaging is provided. A 3D Fourier Transform acquisition is performed with two phase encode directions, wherein phase code locations are chosen so that a total number of phase encodes is less than a Nyquist rate, and closest distances between phase encode locations takes on a multiplicity of values. Readout signals are received through a multi-channel array of a plurality of receivers. An autocalibrating parallel imaging interpolation is performed and a noise correlation is generated. The noise correlation is used to weight a data consistency term of a compressed sensing iterative reconstruction. An image is created from the autocalibration parallel imaging using the weighted data consistency term. The image is displayed.
摘要:
A three dimensional image, in a phased array magnetic resonance imaging (MRI) system is provided. Three dimensional k-space data within an auto calibration signal (ACS) region and outside the ACS region are acquired. The k-space data within the ACS region are converted into hybrid space ACS data. Compression matrices and alignment matrices of the compression matrices for the hybrid space ACS data are found along a readout direction. Alignment matrices are multiplied to the compression matrices to achieve the properly-aligned compression matrices along the readout direction. All k-space data are converted into hybrid space. The properly-aligned compression matrices are applied to the hybrid space data to provide compressed data with fewer channels. The compressed data are used to form a three dimensional image.
摘要:
Imaging time using PILS is reduced by using multiple coils with localized sensitivities with each coil having a separate demodulation channel thereby permitting parallel signal processing and image reconstruction. Images from the multiple coils are then combined to form an image with a larger field of view (FOV).
摘要:
Magnetic resonance signals for imaging species having short spin-spin relaxation times (T.sub.2) are obtained without the need for a refocusing lobe. A series of RF excitation pulses are applied to the species with magnetic resonance signals being detected after each RF excitation pulse is applied. The magnetic resonance signals are then combined to provide the imaging signals. In one embodiment, each RF excitation pulse is half of a conventional slice-selective pulse with each pulse being slewed to zero. Contrast between the imaged short T.sub.2 species and longer T.sub.2 species can be enhanced by first applying an RF signal having sufficient amplitude to excite the longer T.sub.2 species but insufficient amplitude to excite the short T.sub.2 species whereby the longer T.sub.2 species are tipped by the RF signal. A magnetic gradient can then be applied to dephase the tipped nuclei of the longer T.sub.2 species. The imaging signals are then obtained from magnetic resonance signals from the short T.sub.2 species.
摘要:
A modified projection on convex sets (POCS) algorithm and method for partial k-space reconstruction using low resolution phase maps for scaling full sets of reconstructed k-space data. The algorithm can be used with partial k-space trajectories in which the trajectories share a common point such as the origin of k-space, including variable-density spiral trajectories, projection reconstruction trajectories with a semicircle region acquisition, and projection reconstruction trajectories with every other spike acquired.
摘要:
Magnetic resonance signals for imaging species having short spin-spin relaxation times (T.sub.2) are obtained without the need for a refocusing lobe. A series of RF excitation pulses are applied to the species with magnetic resonance signals being detected after each RF excitation pulse is applied. The magnetic resonance signals are then combined to provide the imaging signals. In one embodiment, each RF excitation pulse is half of a conventional slice-selective pulse with each pulse being slewed to zero.
摘要:
Flyback imaging is combined with echo planar imaging (EPI) for improved readout flow properties. For increases in imaging time of 50% or less, significant improvements in imaging are realized. The partial flyback improves partial-Fourier EPI and inside-out EPI and can be applied to any EPI trajectory.
摘要:
Multiple inversion recovery flow imaging employs at least four spin inversion pulses following saturation of static nuclei spins to null nuclei in static material having different spin-lattice relaxation times (T.sub.1) with the inversion pulses being spaced in time to substantially reduce the longitudinal magnetization of the T.sub.1 species present. The saturation of static nuclei spins includes applying a sequence of saturation pulses with adjacent pulses being separated by a diphasing gradient to avoid refocusing coherence. The detection of signals includes applying at least one RF read-out pulse near the nulling point.
摘要:
A steady-state condition for tipped nuclear spins is accelerated or catalyzed by first determining magnetization magnitude of the steady state and the scaling magnetization along one axis (Mz) to at least approximate the determined magnetization magnitude. Then the scaled magnetization is rotated to coincide with a real-valued eigenvector extension of the tipped steady-state magnetization. Any error vector will then decay to the steady-state condition without oscillation. In one embodiment, the magnetic resonance imaging utilizes steady-state free precession (SSFP). The scaling and rotating steps are followed by the steps of applying read-out magnetic gradients and detecting magnetic resonance signals from the tipped nuclear spins. The magnetization magnitude is determined by eigenvector analysis, and the eigenvector extension is a real-valued eigenvector determined in the analysis.