摘要:
A method and apparatus for reducing the complexity of waveform correlation computations used by a multicode receiver is described herein. One exemplary multicode receiver includes a despreading unit, channel estimator, and waveform correlation calculator. The despreading unit despreads a received multicode signal to generate despread symbols. The channel estimator estimates channel coefficients associated with the despread symbols. The waveform correlation calculator determines waveform correlations between the transmitted symbols in successive processing windows that span two or more symbol periods and that overlap in time. To reduce the computational complexity associated with computing waveform correlations, the calculator may reuse channel coefficients and/or net channel correlations for multiple symbol periods and/or processing windows. The calculator may also reduce complexity by reusing one or more waveform correlations from a previous processing window as waveform correlations for one or more subsequent processing windows and/or by exploiting the Hermitian symmetry of the waveform correlation matrix.
摘要:
A wireless communication receiver, such as the receiver included in a wireless communication transceiver implemented in a base station or in a mobile station of a wireless communication network, includes a parametric G-RAKE receiver circuit and a method that compute parametric scaling parameters on a per transmission interval basis. In one embodiment, measured impairment correlations are obtained for an individual transmission slot and used to estimate instantaneous values of the scaling parameters. One or both of those instantaneous values are then constrained according to one or more defined limits. In other embodiments, multiple transmission slots are used to increase the number of measurements available to estimate the scaling parameters, with parameter constraining optionally applied. Further embodiments use iterative methods and/or solve for one parameter, and use the results to obtain the other parameter(s). One or more of these embodiments can be improved through the use of error correction/detection information.
摘要:
A receiver includes a baseband processor for selecting a set of demodulation processing delays for received signal demodulation from a larger set of candidate delays. In one embodiment, the baseband processor selects the set of demodulation processing delays by calculating at least one metric for each demodulation processing delay in the set of candidate delays, iteratively reducing the set of candidate delays by eliminating one or more demodulation processing delays from the set as a function of comparing the metrics, and setting the processing delays for received signal demodulation to the candidate delays remaining after reduction. In a Generalized RAKE (G-RAKE) embodiment, the metric corresponds to combining weight magnitudes associated with G-RAKE finger delays. In a chip equalizer embodiment, the metric corresponds to coefficient magnitudes associated with equalization filter tap delays. In other embodiments, the metric corresponds to Signal to Interference Ratios (SIRs) associated with the set of candidate delays.
摘要:
Signal processing delays are selected from a candidate set in a wireless receiver based on both present and past channel behavior. According to one embodiment, a subset of signal processing delays are selected for received signal processing by accumulating a history of periodic delay selection computations for a candidate set of signal processing delays during a time interval. The delay selection calculations are based on cross-correlations between different ones of the signal processing delays. At the end of the time interval, a subset of the signal processing delays are selected from the candidate set of delays for received signal processing based on the history of delay selection computations.
摘要:
According to one embodiment taught herein, a method of determining impairment correlations between a plurality of delays of interest for a received CDMA signal comprises generating kernel functions as samples of a net channel response of the received CDMA signal taken at defined chip sampling phases for delay differences between the plurality of delays of interest. In a parametric Generalized Rake (G-Rake) receiver embodiment, the delays of interest represent the delay positions of the fingers being used to characterized received signal. In a chip equalizer receiver embodiment, the delays of interest represent the delay positions of the equalizer taps. The method continues with determining impairment correlations based on convolving the kernel functions. Corresponding receiver circuits, including an impairment correlation estimation circuit configured for parametric G-Rake operation, may be implemented in a variety of communication devices and systems, such as in wireless communication network base stations and mobile stations.
摘要:
The teachings presented herein improve the processing of individual signals of interest included in a received composite signal by computing combining weights and/or signal quality estimates for each signal of interest, e.g., for linear equalization, based on either shared or non-shared correlation estimates. As a non-limiting advantage, the use of shared correlation estimates reduces computational loading as compared to the processing load that would be needed for computing non-shared correlation estimates for all signals of interest. As a further non-limiting advantage, the conditional use of shared and non-shared correlation estimates provides for the use of non-shared correlation estimates where signal characteristic(s) of one or more of the signals of interest warrant such usage, e.g., for one or more high-rate signals of interest.
摘要:
A wireless communication receiver obtains improved performance under certain fast fading conditions by basing one or more received signal processing operations on pre-despreading chip sample correlations rather than on post-despreading noise correlations, but preserves soft scaling information by determining one or more scaling factors that relate the chip sample correlations to the noise correlations. By way of non-limiting examples, a Generalized RAKE receiver circuit may base combining weight generation on chip sample correlations rather than on post-despreading pilot symbol noise correlations, but scale the combining weights as a function of the one or more scaling factors, or, equivalently, scale the combined values generated from the combining weights. Similar scaling may be performed with respect to chip equalization filter combining weights in a chip equalization receiver circuit. Further, Signal-to-Interference Ratio (SIR) estimation may be improved in terms of fast fading responsiveness by using chip sample correlations, while preserving the proper scaling.
摘要:
A method and apparatus for reducing the complexity of waveform correlation computations used by a multicode receiver is described herein. One exemplary multicode receiver includes a despreading unit, channel estimator, and waveform correlation calculator. The despreading unit despreads a received multicode signal to generate despread symbols. The channel estimator estimates channel coefficients associated with the despread symbols. The waveform correlation calculator determines waveform correlations between the transmitted symbols in successive processing windows that span two or more symbol periods and that overlap in time. To reduce the computational complexity associated with computing waveform correlations, the calculator may reuse channel coefficients and/or net channel correlations for multiple symbol periods and/or processing windows. The calculator may also reduce complexity by reusing one or more waveform correlations from a previous processing window as waveform correlations for one or more subsequent processing windows and/or by exploiting the Hermitian symmetry of the waveform correlation matrix.
摘要:
A flexible Fast Walsh Transform circuit provides configurable FWT sizes, and is suitable for use in radio receivers where the received signal may be generated using varying spreading codes and/or varying numbers of multi-codes. Such signal types are commonly encountered in wireless communication systems like those based on the Wideband CDMA (W-CDMA) or IS-2000 (cdma2000) standards, and particularly with the higher data rate provisions of those standards. In one application, a RAKE receiver includes RAKE fingers that each include one of the flexible FWT circuits, such that each finger despreads the received signal using variably sized FWTs in accordance with the characteristics of the received signal. The flexibility in FWT sizing may derive from, for example, the inclusion of separately selectable but differently sized FWT circuits, or from the inclusion of a configurable FWT circuit capable of generating different sizes of FWTs.
摘要:
A reduced search symbol estimation algorithm includes a forward recursion, a backward recursion, and a combining step. To reduce complexity, during the forward and backward recursions, the number of survivor states retained at each stage is less than the total number of states of the trellis. The survivor states are selected from a group of candidate states, that are connected by branches to survivors from the previous stage of the recursion. The decoder compares the accumulated path metrics for each candidate state and retains a specified number of states that is less than the total possible number of states. For the forward recursion, the retained states or survivor states, denoted as Qk, are stored along with the corresponding state metrics. For the backward recursion, the retained states, denoted as Rk, are stored along with the corresponding state metrics. During the combining step, the computation of a soft value is restricted to branches (s′,s) connecting survivor states s′ and s in the forward and backward recursions respectively.