摘要:
Disclosed is a battery with a light weight and a high energy density. The battery includes a anode 5, having a layer of an anode active material 9 formed on an anode substrate 8, a cathode 6, including a layer of a cathode active material 14 formed on a cathode substrate 13, and a non-aqueous liquid electrolyte 4. The anode substrate 8 includes an anode resin film 11 containing a polymer and an anode metal layer 12 containing an electrically conductive metal. Since the anode resin film 11 reduces the weight of the anode substrate 8 and the anode metal layer 12 imparts electron conductivity to the anode substrate 8, the battery may be reduced in weight without detracting from battery characteristics to increase the energy density.
摘要:
A non-aqueous electrolyte battery includes an cathode having an cathode mixture layer containing an cathode active material; an anode having an anode mixture layer containing an anode active material which includes a first active material and/or a second active material, where the first active material includes a metal, alloy or compound capable of react with lithium, and the second active material includes a carbonaceous material; and a non-aqueous electrolytic solution. By allowing the anode to contain the first active material in a predetermined amount, and by controlling the packing ratio of the anode mixture layer, the anode is successfully prevented from being degraded due to expansion-and-shrinkage of the anode active material in response to the charge/discharge cycle, and thus degradation of the charge/discharge characteristics of the battery is suppressed.
摘要:
A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm−1 in a surface-enhanced Raman spectrum which is measured by the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
摘要:
A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm−1 in a surface-enhanced Raman spectrum which is measured by the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.