-
公开(公告)号:US20200011952A1
公开(公告)日:2020-01-09
申请号:US16574727
申请日:2019-09-18
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Jeremy Christopher Jordan , Michael Stephen Poole , Laura Sacolick , Todd Rearick , Gregory L. Charvat
IPC: G01R33/56 , G01R33/36 , G01R33/38 , G01R33/34 , G01R33/385 , G01R33/28 , G01R33/565 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54
Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
-
公开(公告)号:US10371773B2
公开(公告)日:2019-08-06
申请号:US16130712
申请日:2018-09-13
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/38 , G01R33/385 , G01R33/383 , G01R33/44 , G01R33/389 , G01R33/421 , G01R33/56 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , A61B50/13 , G01R33/36 , G01R33/422 , G01R33/3873
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US10330755B2
公开(公告)日:2019-06-25
申请号:US15879203
申请日:2018-01-24
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/34 , G01R33/385 , G01R33/383 , G01R33/44 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/48 , A61B90/00 , A61B50/13 , G01R33/36 , G01R33/422 , G01R33/3873
Abstract: According to some aspects, a low power magnetic resonance imaging system is provided. The magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprising a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to the field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view. The magnetic resonance imaging system further comprises a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, wherein the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition. According to some aspects, the magnetic resonance imaging system is a low-field magnetic resonance imaging system comprising a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system.
-
公开(公告)号:US20190178963A1
公开(公告)日:2019-06-13
申请号:US16275295
申请日:2019-02-13
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/44 , G01R33/389 , A61B5/055 , G01R33/383 , G01R33/421 , G01R33/56 , G01R33/38 , G01R33/34 , G01R33/48 , A61G13/10 , A61B50/13 , A61B6/00 , A61B90/00
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US10241177B2
公开(公告)日:2019-03-26
申请号:US15498432
申请日:2017-04-26
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Todd Rearick , Jonathan M. Rothberg
IPC: G01R33/56 , G01R33/36 , G01R33/38 , G01R33/385 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54 , G01R33/34 , G01R33/28 , G01R33/565 , G01R33/422
Abstract: In some aspects, a magnetic system for use in a low-field MRI system. The magnetic system comprises at least one electromagnet configured to, when operated, generate a magnetic field to contribute to a B0 field for the low-field MRI system, and at least one permanent magnet to produce a magnetic field to contribute to the B0 field.
-
公开(公告)号:US10222434B2
公开(公告)日:2019-03-05
申请号:US15879254
申请日:2018-01-24
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/383 , G01R33/44 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , A61B50/13 , G01R33/36 , G01R33/422 , G01R33/3873
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
公开(公告)号:US20190018096A1
公开(公告)日:2019-01-17
申请号:US16123989
申请日:2018-09-06
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/44 , G01R33/389 , A61B50/13 , A61B90/00
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
公开(公告)号:US20190011514A1
公开(公告)日:2019-01-10
申请号:US16130788
申请日:2018-09-13
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon
IPC: G01R33/385 , G01R33/44 , G01R33/389 , A61B50/13 , A61B90/00
CPC classification number: G01R33/3852 , A61B5/0555 , A61B6/4405 , A61B50/13 , A61B90/00 , A61B2560/0431 , A61G13/104 , G01R33/34092 , G01R33/3642 , G01R33/3657 , G01R33/38 , G01R33/3802 , G01R33/3806 , G01R33/383 , G01R33/385 , G01R33/3854 , G01R33/3873 , G01R33/389 , G01R33/4215 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/5608
Abstract: An apparatus for providing a B0 magnetic field for a magnetic resonance imaging system, the apparatus comprising: at least one permanent B0 magnet to produce a magnetic field to contribute to the B0 magnetic field for the magnetic resonance imaging system, the at least one permanent B0 magnet comprising a plurality of permanent magnet rings, each of the plurality of permanent magnet rings comprising a plurality of permanent magnet segments having a respective height in a direction normal to the respective permanent magnet ring, wherein the height of at least one first permanent magnet segment is different than the height of at least one second permanent magnet segment, and wherein the at least one first permanent magnet segment and the at least one second permanent magnet are in different ones of the plurality of permanent magnet rings.
-
公开(公告)号:US09817093B2
公开(公告)日:2017-11-14
申请号:US14845652
申请日:2015-09-04
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Matthew Scot Rosen , Gregory L. Charvat , William J. Mileski , Todd Rearick , Michael Stephen Poole , Keith G. Fife
IPC: G01V3/00 , G01R33/38 , G01R33/36 , G01R33/385 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54 , G01R33/56 , G01R33/34 , G01R33/422
CPC classification number: G01R33/5608 , G01R33/28 , G01R33/34007 , G01R33/36 , G01R33/3614 , G01R33/38 , G01R33/3802 , G01R33/3804 , G01R33/3806 , G01R33/381 , G01R33/383 , G01R33/385 , G01R33/3852 , G01R33/3854 , G01R33/3856 , G01R33/3858 , G01R33/3875 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/543 , G01R33/546 , G01R33/56 , G01R33/56518 , G01R33/58 , H01F7/02 , H01F7/06
Abstract: According to some aspects, a laminate panel is provided. The laminate panel comprises at least one laminate layer including at least one non-conductive layer and at least one conductive layer patterned to form at least a portion of a B0 coil configured to contribute to a B0 field suitable for use in low-field magnetic resonance imaging (MRI).
-
公开(公告)号:US20170227616A1
公开(公告)日:2017-08-10
申请号:US15498432
申请日:2017-04-26
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Todd Rearick , Jonathan M. Rothberg
IPC: G01R33/36 , G01R33/383 , G01R33/56 , G01R33/381 , G01R33/44 , G01R33/385 , G01R33/3875
CPC classification number: G01R33/5608 , G01R33/28 , G01R33/34007 , G01R33/36 , G01R33/3614 , G01R33/38 , G01R33/3802 , G01R33/3804 , G01R33/3806 , G01R33/381 , G01R33/383 , G01R33/385 , G01R33/3852 , G01R33/3854 , G01R33/3856 , G01R33/3858 , G01R33/3875 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/543 , G01R33/546 , G01R33/56 , G01R33/56518 , G01R33/58 , H01F7/02 , H01F7/06
Abstract: In some aspects, a magnetic system for use in a low-field MRI system. The magnetic system comprises at least one electromagnet configured to, when operated, generate a magnetic field to contribute to a B0 field for the low-field MRI system, and at least one permanent magnet to produce a magnetic field to contribute to the B0 field.
-
-
-
-
-
-
-
-
-