Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating control information in a Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU). For example, an apparatus may include logic and circuitry configured to cause a wireless station to generate a PPDU comprising a header field, a payload after the header field, and a control trailer after the payload, the control trailer comprising control information, the header field indicating presence of the control trailer; and to transmit the PPDU over a directional wireless communication band.
Abstract:
Techniques to enable dynamic bandwidth management at the physical layer level while maintaining backwards compatibility in wireless systems is provided. Furthermore, techniques for reducing the occurrence of exposed nodes are provided. A transmitter may transmit a frame including an indication that a PHY layer sub-header defining a bandwidth associated with a channel is present. Furthermore, the transmitter may transmit a third frame after receiving a second frame from a receiver to indicate to legacy stations that the TXOP was successful.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of wireless transmission over a bonded channel. For example, a wireless station may be configured to determine a Clear Channel Assessment (CCA) busy state of a secondary channel in a directional wireless communication band upon detecting transmission of a first packet over the secondary channel; to determine a CCA idle state of the secondary channel upon detecting transmission of a second packet indicating an end of a transmission sequence including the first packet; and to process transmission of a wireless transmission over a bonded channel including a primary channel and the secondary channel, if the CCA state of the secondary channel and a CCA state of the primary channel are idle during at least a back-off and an InterFrame Space (IFS).
Abstract translation:一些演示实施例包括通过绑定信道的无线传输的装置,装置,系统和方法。 例如,无线站可以被配置为在检测到辅助信道上的第一分组的传输时,确定定向无线通信频带中的辅助信道的清除信道评估(CCA)忙状态; 在检测到指示包括第一分组的传输序列的结束的第二分组的传输时,确定辅助信道的CCA空闲状态; 并且如果辅助信道的CCA状态和主信道的CCA状态在至少回退期间是空闲的,则处理通过包括主信道和辅信道的绑定信道的无线传输的传输,并且InterFrame Space (IFS)。
Abstract:
Described herein are architectures, platforms and methods for implementing a direct estimation of a transmitter's position based upon raw radio frequency (RF) signals that are received by a portable device. A mathematical operation such as a maximum-likelihood estimation (MLE) algorithm, which utilizes collected snapshots from the received raw RF signals as variables, is implemented to perform direct estimation.
Abstract:
Embodiments describe mechanisms for an Access Point (AP) to aggregate multiple devices (e.g., stations (STA)) across frequency during a single time period. STAs will be considered for frequency aggregation only if they have a measured SNR at the AP below a threshold. Methods are described that select STAs for aggregation based on associated SNR and other criteria and then assign frequency slots to the selected STAs. Selection for aggregation and assignment to frequency slots can also be balanced across time, so that different STAs are selected for aggregation over time. Mechanisms are also described that increase the opportunities for frequency aggregation.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of beamforming. For example, a responder station may process a received Beam Refinement Protocol (BRP) request including a beam tracking request from an initiator station; and select whether or not to transmit a BRP response including beam tracking feedback, in response to the BRP request, based on a comparison between a time period and a BRP tracking time limit, the time period being based on a timing of the BRP request and a timing of the BRP response.
Abstract:
Techniques to enable dynamic bandwidth management at the physical layer level while maintaining backwards compatibility in wireless systems is provided. Furthermore, techniques for reducing the occurrence of exposed nodes are provided. A transmitter may transmit a frame including an indication that a PHY layer sub-header defining a bandwidth associated with a channel is present. Furthermore, the transmitter may transmit a third frame after receiving a second frame from a receiver to indicate to legacy stations that the TXOP was successful.
Abstract:
Apparatus, computer readable media, and methods for enhanced beamforming training in a wireless local area network are disclosed. An apparatus of a access point or station is disclosed. The apparatus including processing circuitry where the processing circuitry is configured to encode an EBRP packet comprising a first portion comprising an indication of a first number of transmit antenna training settings (N-TX), and an indication of a second number of receive training subfields per N-TX settings (N-RX), and a second portion comprising a third number of training subfields. The third number may be less than or equal to N-TX times N-RX. The processing circuitry may be configured to cause the first portion of the EBRP packet to be transmitted and cause the second portion to be transmitted, where two or more of the third number of training subfields are to be transmitted simultaneously using different antennas and orthogonal sequences.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wireless transmission according to a Physical Layer scheme. For example, a wireless station may be configured to generate a frame including a header and a data portion, the header including a modulation and coding scheme (MCS) value of an Orthogonal Frequency Divisional Multiplexing (OFDM) Physical layer (PHY) scheme or a Low Power Single Carrier (LPSC) PHY scheme; modulate and encode the header according to a Single Carrier (SC) PHY scheme; modulate and encode the data portion according to the OFDM PHY scheme or the LPSC PHY scheme; and process transmission of the frame.
Abstract:
This disclosure describes the generation and implementation of Golay sequences and Golay Sequence Sets (GSSs) for channel estimation in wireless networks. In one embodiment, this disclosure describes an extension of the Golay sequences Ga and Gb defined in various legacy standards to GSSs. In various embodiments, the disclosed GSSs can include a number of Golay complementary pairs (e.g., Ga and Gb). In one embodiment, the disclosed Golay complementary pairs can meet various predetermined design rules and can be used to define enhanced directional multi-gigabit (EDMG) short training field (STF) and/or channel estimation field (CEF) fields for multiple-input and multiple-output (MIMO) transmission.