Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content, and an LED lighting system coupled to a light transmissive illumination system of the optical assembly. An optical imperfection of the illumination system directs light from the LED lighting system to uniformly irradiate a reflective image display to produce an image that is reflected through the illumination system to provide the displayed content to the user.
Abstract:
A see-through head mounted display apparatus with reduced eyeglow is disclosed. Two images of a scene are combined and presented to a user, the combined image including portions of reflected image light and light from a see-through view of an external environment. The apparatus includes a light control element to block escaping portions of image light and reflected portions of scene light, while allowing incoming scene light to be transmitted from the external environment. The images are produced using a partially reflecting mirror and a light control element. A portion of scene light is transmitted through the partially reflecting mirror and is combined with a portion of image light reflected from the partially reflecting mirror. A light control element is used to block a portion of the image light and a portion of the scene light to reduce eyeglow.
Abstract:
The disclosure relates to adjusting a brightness of an image displayed on a see-through display in response to a measured brightness of a see-through view. In one example, the brightness of the see-through view is measured via a sensor located behind a see-through display so that the measured brightness corresponds to the brightness perceived by the user's eyes. Changes in brightness of the displayed image are determined in correspondence to changes in the measured brightness of the see-through view.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content and a light source that directs light to a curved polarizing film of the optical assembly that reflects a portion of the light to illuminate a reflective image display. The optical assembly comprises an optically flat film that reflects the image light from the reflective image display to a curved partially reflecting mirror that reflects a portion of the image light and transmits a portion of the scene light from a see-through view of the surrounding environment, so that a combined image comprised of portions of the reflected image light and the transmitted scene light is transmitted through the optically flat film and provided to the user's eye.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content. The optical assembly comprises a reflective image display that generates and reflects image light to an optically flat film then to a curved partially reflecting mirror of the optical assembly that reflects a portion of the image light from the image source and transmits a portion of the scene light from a see-through view of the surrounding environment to the user's eye as a combined image. The optical assembly comprises a modular image source, wherein the modular image source is mounted in a frame of the eyepiece such that its position with respect to a user's eye can be adjusted.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content, wherein the optical assembly comprises an optically flat film, disposed at an angle in front of a user's eye, that reflects a portion of the image light from the image source to a curved partially reflecting mirror. The curved partially reflecting mirror reflects a portion of the image light from the image source and transmits a portion of the scene light from a see-through view of the surrounding environment, so that a combined image comprised of portions of the reflected image light and the transmitted scene light is transmitted through the optically flat film and provided to the user's eye.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content and a light source that directs light to a curved polarizing film of the optical assembly that reflects a portion of the light to illuminate a reflective image display. The optical assembly comprises an optically flat film that reflects the image light from the reflective image display to a curved partially reflecting mirror that reflects a portion of the image light and transmits a portion of the scene light from a see-through view of the surrounding environment, so that a combined image comprised of portions of the reflected image light and the transmitted scene light is transmitted through the optically flat film and provided to the user's eye.
Abstract:
A method and device for adapting a display image on a hand-held portable wireless display and digital capture device. The device includes a camera for capturing a digital video and/or still image of a user, means for adjusting the captured digital image in response to poor image capture angle of said image capture device so as to create a modified captured digital image; and means for transmitting said modified captured digital image over a wireless communication network to a second hand-held portable wireless display and digital capture device.
Abstract:
Video communication systems and methods for operating the same are provided with the method determining privacy settings for a video communication event; establishing a video communication link with a video communication system at a remote site; capturing video images of a field of view of at least one image capture device; determining a video context based at least in part upon a determined contextual classification for the communication event; analyzing the captured video images to identify privacy sensitive areas in the captured video images, using a scene analysis algorithm which examines a content of the video images and image context characteristics of the video images based upon the determined privacy settings; modifying the image characteristics in identified privacy sensitive image areas of captured video images, to control the image and image context characteristics to an extent consistent with the determined privacy settings; and transmitting the modified video images.
Abstract:
An image capture and display device is described. The device includes a liquid crystal display panel, which can switch between two states, a display state and the capture state. Wherein at least a portion of the display and a switchable diffuser become transparent in the capture state. One or more image capture devices are located behind the display. Holes or windows are provided in the backlight for the image capture devices to capture images of the scene in front of the device when in the capture state.