摘要:
Techniques for enabling both preventive overdrive pacing and antitachycardia pacing (ATP) within an implantable device are provided. The device gains the benefits of overdrive pacing for preventing the onset of a tachycardia and, if one nevertheless occurs, ATP is employed to terminate the tachycardia. In particular, a technique is provided for promptly detecting the onset of atrial tachycardia during preventive overdrive pacing based on loss of capture of atrial pacing pulses. A technique is also provided for using detection of loss of capture of atrial or ventricular pacing pulses to trigger automatic switching from overdrive pacing to ATP. A setup technique determines whether to enable the automatic switching from overdrive pacing to ATP within a particular patient. Also, techniques are provided for verifying loss of capture of atrial or ventricular backup pacing pulses and for detecting low amplitude ventricular fibrillation based on loss of capture of ventricular backup pacing pulses.
摘要:
Techniques are provided for allowing Automatic Mode Switching (AMS) to be exploited within dual unipolar systems employing Combipolar sensing. Relative refractory windows are opened within both the atrial and ventricular refractory periods for the purposes of determining the atrial rate using Combipolar sensing logic. In this manner, T-waves occurring during the relative refractory windows are excluded from the atrial rate calculation, whereas any P-waves occurring during the relative refractory windows are counted, thereby achieving a more accurate atrial rate calculation, particularly at high atrial rates, and thus permitting AMS to be enabled along with Combipolar sensing in the dual unipolar lead system. An alternative technique is provided for use in dual unipolar systems not initially set to a Combipolar Sensing mode, which also achieves more accurate atrial rate calculation at high atrial rates. Additional techniques are provided for use in dual bipolar systems. An improved Combipolar sensing logic is also provided.
摘要:
A programmer for implantable stimulation devices and surface ECG system in wireless communication with each other. A self-powered ECG monitor with conventional surface electrodes transceives signals from and to a programmer provided with a radio frequency transceiver to eliminate hardwiring between the surface electrodes and the programmer. The system reduces the need for supply line frequency filtering and isolation circuitry to protect against high voltage defibrillation shocks.
摘要:
Techniques for improving the specificity of automatic mode switching (AMS) are provided to prevent inappropriate mode switching and to ensure that mode switching is performed when needed. In one example, improved techniques for calculating a filtered rate interval (FARI) are provided, which help avoid inappropriate mode switching within devices that employ FARI in connection with the determination of the atrial rate. Also, techniques are provided for detecting atrial tachycardia and for distinguishing between a true tachycardia and a false tachycardia (such as pacemaker mediated tachycardia). The techniques described herein for detecting atrial tachycardia and for distinguishing between true and false tachycardia are advantageously employed in connection with AMS but may be used in other circumstances as well. Techniques employed in conjunction with dynamic atrial overdrive (DAO) pacing are also discussed.
摘要:
An implantable medical device provides atrial arrhythmia prevention pacing when an interatrial conduction disturbance is detected. The implantable medical device includes a signal processor that detects the interatrial conduction disturbance and a pulse generator circuit coupled to the detector that delivers the atrial arrhythmia prevention pacing pulses to the heart when the processor detects the interatrial conduction disturbance. The interatrial conduction disturbance may be a P-wave duration, a difference between odd and even P-waves, or a predetermined P-wave spectral energy distribution.
摘要:
An implantable programmable cardiac stimulation device and associated method for differentiating between normal sinus events and ectopic beats. The stimulation device monitors the sensing thresholds of sinus and non-sinus cardiac events, and stores a history of these sensing thresholds along with temporal data for accurate event detection. The stimulation device further provides accurate and appropriate detection of sensed events including P-waves, non-conducted PACs, and conducted PACs and thus verifies correct detection of PVCs and R-waves. Furthermore, the present invention provides a history record of ectopic events, distinguished by sensing thresholds and timing intervals, giving a valuable diagnostic tool to the physician in optimizing rhythm management therapy. In addition, the stimulation device allows the sensitivity threshold to be set based on a single cardiac cycle and past history.
摘要:
An implantable cardiac stimulation system capable of automatic capture verification is provided with an associated method for performing automatic testing functions using programmable, or automatically determined, atrioventricular delays. Automatic threshold testing and evoked response sensitivity testing performed at a user-specified delay setting, rather than a preset setting, allows assessment of automatic capture verification based on an atrioventricular delay relevant to daily system function. Further features of the present invention are an adjustable frequency with which automatic threshold tests are performed and an adjustable frequency with which threshold test results are stored in memory in a threshold record for better monitoring of lead stability or impending clinical problems. The frequency of performing threshold tests and the frequency of storing threshold test results may be varied according to the threshold stability. Stored threshold test results are advantageously displayed with respect to a fixed or variable time scale.
摘要:
Location-specific diagnostic information is detected and recorded by the cardiac stimulation device for subsequent display using the external programmer device. The diagnostic information includes location-specific event records, counters and IEGM signals. The event records include event codes that distinguish among events occurring in the four chambers of the heart, such as sensed or paced events occurring within the left or right atria or the left or right ventricles. The counters separately count events occurring within the chambers of the heart. The IEGM signals are separately detected within the four chambers of the heart using a multiple sensing lead arrangement. The location-specific event records, counters and IEGM signals are ultimately transmitted to the external programmer, which displays graphic representations of the diagnostic information. The event records are displayed using distinct event marker icons which distinguish among the four chambers of the heart. The distinct event marker icons are displayed along with location-specific IEGM displays or surface ECG displays to permit a physician operating the programmer to easily identify the specific chambers of the heart in which events the occurred. Additionally, the programmer displays the values of the various counters to provide, for example, a set of location-specific histograms. The diagnostic information detected and recorded by the stimulation device and displayed by the external programmer device may further distinguish among events detected at multiple locations within each chamber of the heart. Method and apparatus embodiments are described.
摘要:
A system and method detects and terminates a repetitive nonreentrant ventriculo-atrial synchronous (RNRVAS) rhythm. The system and method is particularly adapted for use in an implantable cardiac stimulation device that includes a pulse generator that delivers atrial and ventricular pacing stimulation pulses and implements an atrial escape interval and a VA delay interval. This system includes a sensing circuit that senses cardiac activity of a heart and a detector that is responsive to the sensing circuit that determines if an RNRVAS rhythm is present. If an RNRVAS rhythm is present, a therapy control circuit causes the pulse generator to deliver a secondary atrial pacing pulse following a primary atrial pacing pulse delivered at the end of an atrial escape interval. The therapy control circuit may additionally cause the pulse generator to deliver a tertiary atrial pacing pulse following the next ventricular pacing pulse to prevent the occurrence of a retrograde P wave.
摘要:
An implantable multi-chamber cardiac stimulation device includes flexibly programmable electrode stimulation configurations, and is capable of precisely controlling the stimulation sequence between multiple sites. The stimulation device provides a plurality of connection ports that allow independent connection of each electrical lead associated with a particular stimulation site in the heart. Each connection port further provides a unique terminal for making electrical contact with only one electrode such that no two electrodes are required to be electrically coupled. Furthermore, each electrode, whether residing on a unipolar, bipolar or multipolar lead, may be selectively connected or disconnected through programmable switching circuitry that determines the electrode configurations to be used for sensing and for stimulating at each stimulation site. The stimulation device allows for the programmable selection of each electrode terminal connection to a relatively positive or negative battery potential. In this way, each electrode, when electrically connected, may be programmed to act as the cathode or as the anode during sensing or stimulation delivery. Thus, directionality of the depolarization wave may be controlled by programming the cathode and anode assignments of the stimulation electrodes.