Abstract:
This disclosure provides an extravascular ICD system and method for defibrillating a heart of a patient. The extravascular ICD system includes multiple extravascular electrical stimulation leads or lead segments located in close proximity to one another and having respective defibrillation electrodes. The ICD system utilizes the multiple defibrillation electrodes to form an extravascular electrode vector that may result a reduction in the shock impedance and/or a reduction in the DFT compared to extravascular ICD systems that include only a single extravascular defibrillation electrode. An ICD of the system may, for example, deliver a defibrillation shock using an electrode vector in which a first polarity of the electrode vector is formed by electrically coupling first and second defibrillation electrodes of first and second leads, respectively, to the therapy circuitry and a second polarity of the electrode vector is formed by electrically coupling a housing of the ICD to the therapy circuitry.
Abstract:
A method and medical device for monitoring cardiac function in a patient that includes a plurality of electrodes to deliver cardiac pacing therapy, and a processor configured to determine a pacing threshold in response to initial delivery of the pacing therapy, determine whether there is a change in the pacing threshold during initial delivery of the pacing therapy, adjust a delivery parameter of the pacing therapy in response to determining the change in the pacing threshold during initial delivery of the pacing therapy, determine whether there is an increase in the pacing threshold during delivery of the adjusted pacing therapy, and determine hypokalemia in response to the increase in the pacing threshold during delivery of the adjusted pacing therapy being present.
Abstract:
Implantable leadless cardiac pacing systems and methods for providing substernal pacing using the leadless cardiac pacing systems are described. In one embodiment, an implantable leadless cardiac pacing system includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing is implanted substantially within an anterior mediastinum of a patient and the pulse generator is configured to deliver pacing pulses to a heart of the patient via a therapy vector formed between the first and second electrodes.
Abstract:
Substernal implantable cardioveter-defibrillator (ICD) systems and methods for providing substernal electrical stimulation therapy to treat malignant tachyarrhythmia, e.g., ventricular tachycardia (VT) and ventricular fibrillation (VF) are described. In one example, an implantable cardioveter-defibrillator (ICD) system includes an ICD implanted in a patient and an implantable medical electrical lead. The lead includes an elongated lead body having a proximal end and a distal portion, a connector at the proximal end of the lead body configured to couple to the ICD, and one or more electrodes along the distal portion of the elongated lead body. The distal portion of the elongated lead body of the lead is implanted substantially within an anterior mediastinum of the patient and the ICD is configured to deliver electrical stimulation to a heart of the patient using the one or more electrodes.
Abstract:
Anchoring mechanisms for an implantable electrical medical lead that is positioned within a substernal space are disclosed. The anchoring mechanisms fixedly-position a distal portion of the lead, that is implanted in the substernal space.
Abstract:
Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in implant locations such as substernal spaces or subcutaneous locations. The implant tools include a sheath coupled to a sealing device. The sheath includes a continuous lumen that is in fluid communication with a passage of the sealing device. The lead is advanced through the passage and the lumen for placement of the distal end of the lead at the implant location.
Abstract:
Extravascular implant tools that utilize a bore-in mechanism to safely access extravascular locations and implant techniques utilizing these tools are described. The bore-in mechanism may include a handle and a helix extending from the handle. The bore-in mechanism is used, for example, in conjunction with a tunneling tool to traverse the diaphragmatic attachments to access a substernal location. The tunneling tool may be an open channel tunneling tool or a conventional tunneling tool (e.g., metal rod).
Abstract:
A lead body having a defibrillation electrode positioned along a distal portion of the lead body is described. The defibrillation electrode includes a plurality of electrode segments spaced a distance apart from each other. At least one of the plurality of defibrillation electrode segments includes at least one coated portion and at least one uncoated portion. The at least one coated portion is coated with an electrically insulating material configured to prevent transmission of a low voltage signal (e.g., a pacing pulse) while allowing transmission of a high voltage signal (e.g., a cardioversion defibrillation shock). The at least one uncoated portion is configured to transmit both low voltage and high voltage signals. The lead may also include one or more discrete electrodes proximal, distal or between the defibrillation electrode segments.
Abstract:
An extra-cardiovascular medical device is configured to select a capacitor configuration from a capacitor array and deliver a low voltage, pacing pulse by discharging the selected capacitor configuration across an extra-cardiovascular pacing electrode vector. In some examples, the medical device is configured to determine the capacitor configuration based on a measured impedance of the extra-cardiovascular pacing electrode vector.
Abstract:
In some examples, a system includes a medical device comprising an elongate body configured to advance through layers of tissue of a patient, a lumen extending through the elongate body, a fluid line configured to supply fluid to the lumen, and a pressure sensor positioned within the lumen or the fluid line. The system may further include processing circuitry configured to receive, from the pressure sensor, a signal corresponding to the pressure of the fluid at each of a plurality of time points, determine, for each time point: a corresponding amplitude value of the signal, a difference between two amplitude values of the signal, an amplitude oscillation status of the signal, a position of the elongate body based on the difference and the amplitude oscillation status; and provide an indication of the position of the elongate body relative to the layers of tissue.