Abstract:
Devices and implantation methods utilizing subcutaneous placement into a patient are disclosed for the insertion, advancement and positioning of a subcutaneous implantable medical device (SIMD) such as a medical electrical lead. The device for implanting the SIMD is configured having a pre-biased distal curve for creating a pathway to an implant location within a substernal space.
Abstract:
Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in implant locations such as substernal spaces or subcutaneous locations. The implant tools include a sheath coupled to a sealing device. The sheath includes a continuous lumen that is in fluid communication with a passage of the sealing device. The lead is advanced through the passage and the lumen for placement of the distal end of the lead at the implant location.
Abstract:
Disclosed techniques include monitoring a physiological characteristic of a patient with a sensor that is mounted to an inner wall of a thoracic cavity of the patient, and sending a signal based on the monitored physiological characteristic from the sensor to a remote device.
Abstract:
Devices and implantation methods utilizing subcutaneous placement into a patient are disclosed for the insertion, advancement and positioning of a subcutaneous implantable medical device (SIMD) such as a medical electrical lead. The device for implanting the SIMD is configured having a pre-biased distal curve for creating a pathway to an implant location within a substernal space.
Abstract:
Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in implant locations such as substernal spaces or subcutaneous locations. The implant tools include a sheath coupled to a sealing device. The sheath includes a continuous lumen that is in fluid communication with a passage of the sealing device. The lead is advanced through the passage and the lumen for placement of the distal end of the lead at the implant location.
Abstract:
Devices and implantation methods utilizing subcutaneous placement into a patient are disclosed for the insertion, advancement and positioning of a subcutaneous implantable medical device (SIMD) such as a medical electrical lead. The device for implanting the SIMD is configured having a pre-biased distal curve for creating a pathway to an implant location within a substernal space.
Abstract:
Devices and implantation methods utilizing subcutaneous placement into a patient are disclosed for the insertion, advancement and positioning of a subcutaneous implantable medical device (SIMD) such as a medical electrical lead. The device for implanting the SIMD is configured having a pre-biased distal curve for creating a pathway to an implant location within a substernal space.