Dense three-dimensional correspondence estimation with multi-level metric learning and hierarchical matching

    公开(公告)号:US10832084B2

    公开(公告)日:2020-11-10

    申请号:US16526306

    申请日:2019-07-30

    Abstract: A method for estimating dense 3D geometric correspondences between two input point clouds by employing a 3D convolutional neural network (CNN) architecture is presented. The method includes, during a training phase, transforming the two input point clouds into truncated distance function voxel grid representations, feeding the truncated distance function voxel grid representations into individual feature extraction layers with tied weights, extracting low-level features from a first feature extraction layer, extracting high-level features from a second feature extraction layer, normalizing the extracted low-level features and high-level features, and applying deep supervision of multiple contrastive losses and multiple hard negative mining modules at the first and second feature extraction layers. The method further includes, during a testing phase, employing the high-level features capturing high-level semantic information to obtain coarse matching locations, and refining the coarse matching locations with the low-level features to capture low-level geometric information for estimating precise matching locations.

    Dense correspondence estimation with multi-level metric learning and hierarchical matching

    公开(公告)号:US10679075B2

    公开(公告)日:2020-06-09

    申请号:US16029126

    申请日:2018-07-06

    Abstract: Systems and methods for correspondence estimation and flexible ground modeling include communicating two-dimensional (2D) images of an environment to a correspondence estimation module, including a first image and a second image captured by an image capturing device. First features, including geometric features and semantic features, are hierarchically extract from the first image with a first convolutional neural network (CNN) according to activation map weights, and second features, including geometric features and semantic features, are hierarchically extracted from the second image with a second CNN according to the activation map weights. Correspondences between the first features and the second features are estimated, including hierarchical fusing of geometric correspondences and semantic correspondences. A 3-dimensional (3D) model of a terrain is estimated using the estimated correspondences belonging to the terrain surface. Relative locations of elements and objects in the environment are determined according to the 3D model of the terrain. A user is notified of the relative locations.

    PARAMETRIC TOP-VIEW REPRESENTATION OF SCENES
    65.
    发明申请

    公开(公告)号:US20200050900A1

    公开(公告)日:2020-02-13

    申请号:US16526073

    申请日:2019-07-30

    Abstract: A method for implementing parametric models for scene representation to improve autonomous task performance includes generating an initial map of a scene based on at least one image corresponding to a perspective view of the scene, the initial map including a non-parametric top-view representation of the scene, implementing a parametric model to obtain a scene element representation based on the initial map, the scene element representation providing a description of one or more scene elements of the scene and corresponding to an estimated semantic layout of the scene, identifying one or more predicted locations of the one or more scene elements by performing three-dimensional localization based on the at least one image, and obtaining an overlay for performing an autonomous task by placing the one or more scene elements with the one or more respective predicted locations onto the scene element representation.

    Video surveillance system based on larger pose face frontalization

    公开(公告)号:US10474882B2

    公开(公告)日:2019-11-12

    申请号:US15888747

    申请日:2018-02-05

    Abstract: A video surveillance system is provided. The system includes a device configured to capture an input image of a subject located in an area. The system further includes a processor. The processor estimates, using a three-dimensional Morphable Model (3DMM) conditioned Generative Adversarial Network, 3DMM coefficients for the subject of the input image. The subject varies from an ideal front pose. The processor produces, using an image generator, a synthetic frontal face image of the subject of the input image based on the input image and coefficients. An area spanning the frontal face of the subject is made larger in the synthetic than in the input image. The processor provides, using a discriminator, a decision of whether the subject of the synthetic image is an actual person. The processor provides, using a face recognition engine, an identity of the subject in the input image based on the synthetic and input images.

    System and method for learning random-walk label propagation for weakly-supervised semantic segmentation

    公开(公告)号:US10402690B2

    公开(公告)日:2019-09-03

    申请号:US15801688

    申请日:2017-11-02

    Abstract: Systems and methods for training semantic segmentation. Embodiments of the present invention include predicting semantic labeling of each pixel in each of at least one training image using a semantic segmentation model. Further included is predicting semantic boundaries at boundary pixels of objects in the at least one training image using a semantic boundary model concurrently with predicting the semantic labeling. Also included is propagating sparse labels to every pixel in the at least one training image using the predicted semantic boundaries. Additionally, the embodiments include optimizing a loss function according the predicted semantic labeling and the propagated sparse labels to concurrently train the semantic segmentation model and the semantic boundary model to accurately and efficiently generate a learned semantic segmentation model from sparsely annotated training images.

    Mass transit surveillance camera system

    公开(公告)号:US10290197B2

    公开(公告)日:2019-05-14

    申请号:US15637533

    申请日:2017-06-29

    Abstract: A mass transit surveillance system and corresponding method are provided. The mass transit surveillance system includes a camera configured to capture an input image of a subject purported to be a baby and presented at a mass transit environment. The mass transit surveillance system further includes a memory storing a deep learning model configured to perform a baby detection task for the mass transit environment. The mass transit surveillance system also includes a processor configured to apply the deep learning model to the input image to provide a baby detection result of either a presence or an absence of an actual baby in relation to the subject purported to be the baby. The baby detection task is configured to evaluate one or more different distractor modalities corresponding to one or more different physical spoofing materials to prevent baby spoofing for the baby detection task.

Patent Agency Ranking