Abstract:
The apparatus for producing compacted insulating glass comprises two substantially vertical press platens, one of which is adapted to be moved relative to the stationary press platen in a frame in order to perform the compacting operation. Racks extending at right angles to the movable press platen are rigidly connected to the latter and in mesh with pinions rotatably mounted on fixed axes in the frame. A common drive is provided to rotate the pinions in synchronism. The stationary press platen may carry backing rollers, which can be retracted into the stationary press platen.
Abstract:
In order to seal the corner joint of an elastoplastic tape placed as a spacer on a glass pane, a film strip is pressed with a first portion of its length against the first leg section of the spacer and the protruding portion of the film strip is wrapped around the corner and pressed against the second leg section. For the purpose of automating this process, the film strip is severed mechanically from an automatically supplied film tape and held via a transfer apparatus which thereafter presses the film strip with the first portion of its length against the first leg section. The portion of the film strip protruding freely over the corner is wrapped around the corner via a pressure carriage and pressed by tautening against the second leg section of the spacer.
Abstract:
A device for the dimensionally accurate application of an elastoplastic spacer strip onto a glass pane is disclosed. The device includes a compensating or tailback section between a first adjustably driven pair of rollers and a second adjustably driven pair of rollers, as well as a sensor for recognizing the position of the strip in the compensating section. The device is designed such that the spacer strip is not withdrawn from the storage drum but, instead, is unwound in a manner free from any tensile stress. The spacer strip, furthermore, is kept free from tensile and shearing stresses on the route up to being pressed onto a glass pane, despite the fact that the application speed will inevitably fluctuate several times between zero and a maximum value while edges of the glass pane are covered mechanically.
Abstract:
A device for working of glass panes (1) has a support (5) for the glass panes (1) and a nozzle (2) from which a water jet emerges for cutting the glass panes (1). The nozzle (2) can be moved on a guide (8) parallel to the plane of the support (5). The tool (12) for working of the cut edges of the material plates (1) can likewise be moved on the guide (8) of the nozzle (2) and is preferably mounted on the same carriage (9) which can be moved on the guide (8), as the nozzle (2). This simplifies not only the technical structure of the device, but also shortens the working time, since the glass pane (1) need not be transported to another device for finishing. Moreover, essentially the same control program as for the water jet cutting can be used for finishing.
Abstract:
An insulating glass unit includes an elastoplastic spacer strip and at least two panes. The spacer strip includes a drying agent and has side surfaces configured to adhere to opposite pane surfaces, an inside surface configured to face an inside space between the panes, and an outer surface that is opposite to the inside surface and is coated with a vapor-sealing layer. The spacer strip is dimensionally stable and has a high absorption capacity for water vapor. The spacer strip includes a jacket of a silicone material and a core of the drying agent.
Abstract:
An insulating glass pane structure including two glass panes is formed by providing an elastoplastic strip from a delivery reel, where the elastoplastic strip has a varying dimension along its width including a first, nominal width section and a second, reduced width section that is smaller in width than the nominal width section. Side surface area portions of the nominal width section of the strip are coated with a first adhesive glue, and side surface area portions of the reduced width section of the strip are coated with a second adhesive glue that is diffusion-proof against water vapor. One side surface of the strip is pressed against a first glass pane to form a spacer, the strip being pressed close to an edge of the first glass pane, and the second glass pane is applied and pressed to form the glass pane structure.
Abstract:
A device for testing tempered glass plates using a heat-up phase, a holding phase and a cooling phase has at least one chamber in which the glass plates which are to be tested, standing in harp racks, are placed. The device has a fan with a heating and cooling elements which is connected on the intake side to the top end of the chamber and on the pressure side to the bottom end of the chamber underneath a perforated bottom which borders the chamber to the bottom. The perforated bottom can be a stationary, sloped bottom or a conveyor element with a perforated transport belt. Next to the bottom is a discharge channel for glass pellets which form when a glass plate breaks during the test cycle.
Abstract:
A device for heating plates of glass (3) which are hardened or deformed, includes two ceramic heating plates (1) between which a plate of glass (3) is arranged. Compensation plates (20) are associated with the heating plates (1) at a distance therefrom, in addition to heaters (6) which are arranged close thereto. The heaters (6) are accommodated in housings (11) which are defined on one side of the heating plates (1). Holes (8) are provided in the heating plates (1). Gas is fed through the holes into the housing between the heating plates (1) and the compensating plates (2). The gas is heated by flowing past the compensating plates (20) and forms gas cushions (7) on both sides of the plate of glass (3) which hold the plate. The plate of glass (3) is heated in a homogenous manner by radiation and convection.
Abstract:
A method and apparatus for applying an elastoplastic strip as a spacer in the production of insulating glass panes comprising a supply winder for the strip, several driven strip guide rollers, and a pressing head for the strip which is movable relative to a first glass pane. In contrast to the state of the art, an elastoplastic band is used whose side surfaces are not yet coated with an adhesive. The adhesive is applied only shortly before the application of the strip onto its two side surfaces. For this purpose, mutually opposing nozzles that coat the side surfaces of the strip with an adhesive are arranged between the supply winder and the pressing head.
Abstract:
A device for working of glass panes (1) has a support (5) for the glass panes (1) and a nozzle (2) from which a water jet emerges for cutting the glass panes (1). The nozzle (2) can be moved on a guide (8) parallel to the plane of the support (5). The tool (12) for working of the cut edges of the material plates (1) can likewise be moved on the guide (8) of the nozzle (2) and is preferably mounted on the same carriage (9) which can be moved on the guide (8), as the nozzle (2). This simplifies not only the technical structure of the device, but also shortens the working time, since the glass pane (1) need not be transported to another device for finishing. Moreover, essentially the same control program as for the water jet cutting can be used for finishing.