Abstract:
An access terminal establishes a session with a first radio access network (RAN). As a result, the access terminal receives a Unicast Access Terminal Identifier (UATI) assigned by the first RAN and establishes configuration settings for radio communications between the access terminal and the first RAN. The access terminal moves from the first RAN to a second RAN. Before the access terminal has a session established with the second RAN, the access terminal receives a request from a user to originate a call. In response, the access terminal sends the second RAN a connection request that includes the UATI assigned by the first RAN. The second RAN evaluates the UATI included in the connection request and determines that it was previously assigned to the access terminal by another RAN. Based on this determination, the second RAN grants the connection request by assigning a traffic channel to the access terminal.
Abstract:
A method of operating a wireless communication system includes transmitting a power control code from a wireless access node to each of plurality of wireless communication devices. In each of the plurality of wireless communication devices, the method includes transmitting user communications for receipt by the wireless access node at a first transmit power level as indicated by the power control code. The method also includes transmitting a power mode instruction from the wireless access node to a subset of the plurality of wireless communication devices. In each of the subset of the plurality of wireless communication devices, the method includes transmitting the user communications for receipt by the wireless access node at a second transmit power level as indicated by interpreting the power control code with the power mode instruction.
Abstract:
During a first time interval, an access point transmits orthogonal frequency division multiplexing (OFDM) signals using a first cyclic prefix length. The access point selects a second cyclic prefix length based, at least in part, on the load of the access point. The access point transmits OFDM signals using the second cyclic prefix length during a second time interval. The load of the access point may be determined based on the amount of downlink data being buffered in the access point for transmission to one or more user devices.
Abstract:
Embodiments disclosed herein provide systems and methods for determining whether a wireless device should retransmit data packets based on the condition of a reverse wireless link. In a particular embodiment, a method provides exchanging wireless data packet communications between a wireless device and an access node on a wireless network. The method further provides transmitting a first packet set from the access node to the wireless device on a forward wireless link. The method further provides determining a reverse noise ratio, signal interference noise ratio, and packet error rate on a reverse wireless link and generating a confidence level indicator based on the reverse noise ratio, signal interference noise ratio, and packet error rate. The method further provides determining whether to retransmit the first packet set from the access node to the wireless device based on the confidence level indicator.
Abstract:
Methods, systems, and computer-readable media are provided for presenting coverage bars on a mobile device based on available telecommunications signals. In particular, a mobile device is associated with a plurality of telecommunications signals. Further, the telecommunications signals associated with the mobile device are assessed based on signal strength. A determination is made as to the relative strength of one telecommunications technology over another. Additionally, identifiers of the telecommunications signals are presented on a screen of the mobile device.
Abstract:
A communication system comprises a wireless access node having a plurality of ports and a control system. The wireless access node is configured to exchange wireless communications over the ports with wireless communication devices that are individually identified by device identifiers. The control system is configured to individually allocate the wireless communication devices into categories based on the device identifiers and determine one of the categories having a majority of the wireless communication devices. The control system is configured to configure the ports of the wireless access node to utilize a MIMO 2T2R mode for exchanging the wireless communications if the one category having the majority of the wireless communication devices comprises a first data rate capability, and to configure the ports of the wireless access node to utilize a MIMO 4T4R mode for exchanging the wireless communications if the one category having the majority of the wireless communication devices comprises a second data rate capability.
Abstract:
What is disclosed is a method of operating a wireless communication device, where a wireless access node provides wireless access to communication services over a wireless link for the wireless communication device. The method includes transferring data in a series of frames to the wireless access node over a reverse link portion of the wireless link, where each frame comprises a series of subframes, and transferring a present frame at a first power level. The method also includes, during transfer of the present frame at the first power level, monitoring control information transferred by the wireless access node on a forward link portion of the wireless link, and in response to receiving a power change instruction in the control information, interrupting transfer of the subframes of a present frame at the first power level and restarting transfer of the subframes of the present frame at a second power level.
Abstract:
Exemplary methods and systems are disclosed herein that may help to dynamically adjust page-transmission power based on the amount of concatenation being applied to a page. An exemplary method involves: (i) before transmission of a page to a mobile station by an access network, the access network identifying any concatenation that is being applied to the page; (ii) based at least in part on the concatenation that is being applied to the page, the access network selecting a page-transmission power for the page; and (iii) the access network transmitting the page to the mobile station at the selected page-transmission power. In an exemplary embodiment, a base station may increase the page-transmission power as the amount of concatenation increases, which may help to improve the paging success rate (PSR) for concatenated pages, among other benefits.
Abstract:
A method and system is disclosed for adaptive rate control based on battery life. An access terminal in a wireless communication system that includes a base station will operate in a first state in which, at least, the access terminal responds to receiving reverse-noise messages from the base station by making adjustments to a data transmission rate on a reverse-link traffic channel to the base station in accordance with the received reverse-noise messages. Upon receiving a first threshold number of reverse-noise messages from the base station indicating that the reverse-link noise measured by the base station is alternating above and below the threshold level, and in response having a battery power level below a threshold power level, the access terminal will transition to operating in a second state in which, at least, the access terminal does not make the adjustments to the data transmission rate on the reverse-link traffic channel in response to receiving reverse-noise messages from the base station.
Abstract:
A method and system for helping to avoid communication errors, by ensuring that when a connection identifier (such as a Walsh code or MAC Index) is being assigned to a wireless access terminal for use in a wireless coverage area having a particular coverage-area identifier (such as a particular PN offset), the same connection identifier is not currently assigned to another access terminal in another nearby coverage area that has the same coverage-area identifier.