Abstract:
A method of fabricating a sputtering target, a sputtering target fabricated by the method, and an organic light-emitting display apparatus fabricated by using the sputtering target. The sputtering target may be used for forming a thin film encapsulation layer. The sputtering target includes tin oxide as a main component, and a copper fluoride compound as a dopant.
Abstract:
A method of manufacturing an organic light-emitting display apparatus, which can minimize damage to an emission layer, and an organic light-emitting display apparatus manufactured using the method are provided. The method includes: preparing a backplane including a pixel electrode and a pixel-defining layer protruding further than an upper surface of the pixel electrode and exposing at least a part of the pixel electrode; placing a donor film for laser-induced thermal imaging (LITI) on the backplane; irradiating a predetermined portion of the donor film with a first light from a laser beam to transfer a part of a transfer layer at the predetermined portion of the donor film to the backplane; irradiating at least one of the donor film and the backplane with a second light having a weaker output than that of the first light from the laser beam; and detaching the donor film from the backplane.
Abstract:
A display device includes a display panel and a timing controller. The display panel includes a plurality of pixels, and the timing controller determines a driving method that includes a first sub-frame arrangement method and a second sub-frame arrangement method. An arrangement of weight values of a plurality of sub-frames of the second sub-frame arrangement method is given in an opposite order from an arrangement of weight values of a plurality of sub-frames of the first sub-frame arrangement method. The timing controller applies the first sub-frame arrangement method to a first pixel among the pixels, and applies the second sub-frame arrangement method to a second pixel that is disposed next to the first pixel.
Abstract:
An organic light emitting display includes: a display region including: a plurality of data lines, a plurality of scan lines, and a plurality of pixels coupled to corresponding ones of the data lines and corresponding ones of the scan lines; a timing controller configured to: divide input data into frames, select a set of a plurality of subfields having different time-weighted values for a plurality of gray levels of the input data to generate conversion data, and convert the input data into image data based on the conversion data; a scan driver configured to supply a plurality of scan signals to the scan lines; and a data driver configured to generate a plurality of data signals using the image data and to supply the data signals to the data lines.
Abstract:
In an aspect, an organic light emitting display device is provided. The organic light emitting display device may include a substrate; an organic light emitting unit arranged on the substrate; at least one inorganic layer, which encapsulates the organic light emitting unit and contains a low temperature viscosity transition (LVT) inorganic material; and at least one adhesive layer arranged between the organic light emitting unit and the inorganic layer.
Abstract:
A method for manufacturing an organic light emitting display device includes mounting in a chamber a substrate where a transparent electrode is to be formed and a SnO member that is a source of forming the transparent electrode, injecting argon gas and oxygen into the chamber, and evaporating the SnO member to be deposited on the substrate.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.
Abstract:
An organic light emitting diode (OLED) display device includes a display panel including a plurality of pixel rows; a driving circuit configured to: provide a first display data to the plurality of pixel rows in a normal mode; provide a second display data including black data to the plurality of pixel rows in a dimming mode, in response to a mode signal; and decrease a second luminance of the display panel in the dimming mode to a level lower than a first luminance of the display panel in the normal mode; and a power supply configured to apply a lower power supply voltage and a high power supply voltage to the display panel, the power supply providing the mode signal.
Abstract:
A tablet for a plasma coating system having a first part that includes a first material having a first sublimation point at a first pressure and a second part that is disposed on the first part and comprises a second material having a second melting point at the first pressure, wherein the second melting point is lower than the first sublimation point.