Abstract:
An organic light-emitting display apparatus is provided. The organic light-emitting display apparatus includes: a pixel electrode for reflecting incident light and located on a substrate including a thin film transistor (TFT), and electrically connected to the TFT; an organic layer on the pixel electrode and including an emission layer; and an opposite electrode on the organic layer and including a resonant region for forming a resonant structure with the pixel electrode by reflecting light emitted from the emission layer, and a non-resonant region that is a region other than the resonant region.
Abstract:
A heterocyclic compound is represented by Formula 1 below and an organic light-emitting diode includes the heterocyclic compound. The heterocyclic compounds exhibit good electrical properties, high charge transporting and light-emitting capabilities, and high glass transition temperatures. Organic light-emitting diodes including the compounds of Formula 1 exhibit improved driving voltage, efficiency, brightness, and lifetime characteristics.
Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound: wherein R1 to R12 are defined as in the specification.
Abstract:
A method of manufacturing a touch sensing panel includes providing a substrate, forming a plurality of first electrodes arranged on the substrate, the first electrodes being separated from each other, forming a photoresist layer on the plurality of first electrodes, forming a plurality of photoresist removing regions positioned to intersect the first electrodes and to be separated from each other on the photoresist layer, and forming a tunneling magnetoresistance (TMR) element layer and a second electrode layer comprising a plurality of second electrodes on the photoresist layer. The method provides a touch sensing panel capable of being driven at high speed and reduces manufacturing cost and time.
Abstract:
An amine-based compound and an organic light-emitting diode including the amine-based compound are provided. The amine-based compound may be used between a pair of electrodes of an organic light-emitting diode. For example, the amine-based compound may be used in an emission layer and/or between the emission layer and an anode (for example, in a hole injection layer, a hole transport layer, a functional layer having a hole injection ability and a hole transport ability). Accordingly, an organic light-emitting diode including a first electrode, a second electrode facing the first electrode, and an organic layer that is interposed between the first electrode and the second electrode, and includes the amine-based compound is provided.
Abstract:
Disclosed is an organic light emitting display device improving light efficiency by forming a metal layer having a nanometer thickness on a protective layer formed in order to protect the organic light emitting diode.
Abstract:
A compound represented by Formula 1 below and an organic light-emitting device including the compound are provided: Substituents in Formula 1 are the same as defined in the specification.
Abstract:
An organic light-emitting display apparatus is provided. The organic light-emitting display apparatus includes: a pixel electrode for reflecting incident light and located on a substrate including a thin film transistor (TFT), and electrically connected to the TFT; an organic layer on the pixel electrode and including an emission layer; and an opposite electrode on the organic layer and including a resonant region for forming a resonant structure with the pixel electrode by reflecting light emitted from the emission layer, and a non-resonant region that is a region other than the resonant region.
Abstract:
An organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the organic layer includes a layer having at least one of the compounds having at least one carbazole group, and a flat panel display device including the organic light emitting device. The organic light emitting device has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime.