Abstract:
Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
Abstract:
Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
Abstract:
Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
Abstract:
The present invention provides a method for identifying a thermostable polymerase having altered fidelity. The method consists of generating a random population of polymerase mutants by mutating at least one amino acid residue of a thermostable polymerase and screening the population for one or more active polymerase mutants by genetic selection. For example, the invention provides a method for identifying a thermostable polymerase having altered fidelity by mutating at least one amino acid residue in an active site O-helix of a thermostable polymerase. The invention also provides thermostable polymerases and nucleic acids encoding thermostable polymerases having altered fidelity, for example, high fidelity polymerases and low fidelity polymerases. The invention additionally provides a method for identifying one or more mutations in a gene by amplifying the gene with a high fidelity polymerase. The invention further provides a method for accurately copying repetitive nucleotide sequences using a high fidelity polymerase mutant. The invention also provides a method for diagnosing a genetic disease using a high fidelity polymerase mutant. The invention further provides a method for randomly mutagenizing a gene by amplifying the gene using a low fidelity polymerase mutant.