Methods of lowering the error rate of massively parallel DNA sequencing using duplex consensus sequencing

    公开(公告)号:US12258629B2

    公开(公告)日:2025-03-25

    申请号:US16503398

    申请日:2019-07-03

    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.

    METHODS OF LOWERING THE ERROR RATE OF MASSIVELY PARALLEL DNA SEQUENCING USING DUPLEX CONSENSUS SEQUENCING

    公开(公告)号:US20250019761A1

    公开(公告)日:2025-01-16

    申请号:US18648154

    申请日:2024-04-26

    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.

    METHODS OF LOWERING THE ERROR RATE OF MASSIVELY PARALLEL DNA SEQUENCING USING DUPLEX CONSENSUS SEQUENCING

    公开(公告)号:US20240084385A1

    公开(公告)日:2024-03-14

    申请号:US18465952

    申请日:2023-09-12

    CPC classification number: C12Q1/6876 C12Q1/6806 C12Q1/6869

    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.

    Compositions and methods for improving nanopore sequencing

    公开(公告)号:US11821033B2

    公开(公告)日:2023-11-21

    申请号:US17111167

    申请日:2020-12-03

    CPC classification number: C12Q1/6869 C12Q1/6869 C12Q2523/31 C12Q2565/631

    Abstract: The present disclosure provides methods and reagents for improving nanopore-based analyses of polymers. Specifically, the disclosure provides a method of analyzing a polymer that includes a polymer analyte that contains an end domain that has at least one charged moiety. The disclosure also provides a method of increasing the interaction rate between a polymer analyte and a nanopore, wherein the polymer analyte contains an end domain that has at least one charged moiety. The disclosure also provide compositions for use with the described methods, including adapter compositions that contain charged moieties, such as phosphate or sulfate groups, and that are configured to being linked to an polymer analyte domain.

Patent Agency Ranking