Abstract:
Apparatus having corresponding methods and computer-readable media comprise a first input circuit to receive first data describing a first region of an image, the first region identified based on user markups of the image; a second input circuit to receive second data describing at least one of a second region of the image, the second region identified by an analysis of the image, and a third region of the image, the third region identified by an analysis of an environment that produced the image; and a synthesizer to identify a fourth region of the image based on the first data and the second data.
Abstract:
A graphical user interface (GUI) displaying a viewport includes a panning control region defined within an outer boundary of the viewport within the GUI. The panning control region includes multiple segments, each of the multiple segments corresponding to a panning direction, wherein a panning rate is indicated by a level of translucency of the multiple segments. A panning available region defined along the outer boundary of the viewport within the GUI is included. The panning available region indicates whether a source image extends beyond an edge of the viewport, and the panning available region is a subset of the panning control region. A method for panning an image through a viewport and a computing device are also provided.
Abstract:
A method for efficiently processing image data for display on a computer monitor is provided. The method initiates with reading image data in a compressed format into a memory associated with the computer. Then, at least one scaled copy of the image data is generated in the compressed format. Next, a display scale is determined for an image to be presented on a computer monitor. If the magnification is less than 100% of an image scale associated with the image data, then, either the image data or the at least one scaled copy of the image data is determined as being closest in magnification to the display scale, without being less than the display scale, to provide a closest in magnification image data. Next, the closest in magnification image data in the compressed format is processed. Then, the processed image data is displayed. The method is capable of displaying a portion of the image at any magnification. An integrated circuit chip and a system for efficiently processing image data for display are also provided.