摘要:
A periodic dielectric structure and method of fabricating same, the structure having a three-dimensional photonic bandgap. The structure includes a plurality of layers, at least one layer having a stratum of a first material having a first dielectric constant and a plurality of parallel regions along a first axis lying in the plane of the layer, the regions including a second material having a second dielectric constant; and a plurality of parallel channels formed through the plurality of layers in a second axis orthogonal to the plane of the layers, the channels being adapted to comprise a third material having a third dielectric constant, thereby resulting in the structure having three-dimensional periodicity. In preferred embodiments, the second and third materials include air.
摘要:
A fiber-optic sensor, a method of configuring a fiber-optic sensor, and a method of using a fiber-optic sensor are provided. The fiber-optic sensor includes an optical fiber coil having a length and a laser source optically coupled to the coil. The laser source has a coherence length. Light from the source is transmitted to the coil as a first signal propagating along the coil in a first direction and a second signal propagating along the coil in a second direction opposite to the first direction. The optical paths of the first signal and the second signal are substantially reciprocal with one another and the first signal and the second signal are combined together after propagating through the coil to generate a third signal. The coherence length is greater than 1 meter or is in a range between 200 microns and 10 centimeters.
摘要:
A method for detecting rotation includes providing a plurality of resonant waveguides generally adjacent to one another and optically coupled to one another. Each resonant waveguide of the plurality of resonant waveguides is configured to allow light to propagate along the resonant waveguide in a planar path. The method further includes propagating light along each path in a clockwise direction or along each path in a counterclockwise direction.
摘要:
An optical waveguide gyroscope includes at least one optical coupler configured to receive a first optical signal at a first port, to transmit a second optical signal to a second port, and to transmit a third optical signal to a third port. The optical waveguide gyroscope further includes a plurality of resonant waveguides optically coupled to the second port and the third port. The resonant waveguides are generally adjacent to one another and optically coupled to one another. At least a portion of the second optical signal propagates from the second port to the third port by propagating through the plurality of resonant waveguides, and at least a portion of the third optical signal propagates from the third port to the second port by propagating through the plurality of resonant waveguides. The at least a portion of the second optical signal propagates through each resonant waveguide of the plurality of resonant waveguides in a clockwise direction and the at least a portion of the third optical signal propagates through each resonant waveguide of the plurality of resonant waveguides in a counterclockwise direction.
摘要:
An optical device includes a hollow-core photonic-bandgap fiber, wherein at least a portion of the hollow-core photonic-bandgap fiber is adjustably axially twisted.
摘要:
An optical waveguide gyroscope includes at least one optical coupler configured to receive a first optical signal at a first port, to transmit a second optical signal to a second port, and to transmit a third optical signal to a third port. The optical waveguide gyroscope further includes a plurality of resonant waveguides optically coupled to the second port and the third port. The resonant waveguides are generally adjacent to one another and optically coupled to one another. At least a portion of the second optical signal propagates from the second port to the third port by propagating through the plurality of resonant waveguides, and at least a portion of the third optical signal propagates from the third port to the second port by propagating through the plurality of resonant waveguides. The at least a portion of the second optical signal propagates through each resonant waveguide of the plurality of resonant waveguides in a clockwise direction and the at least a portion of the third optical signal propagates through each resonant waveguide of the plurality of resonant waveguides in a counterclockwise direction.
摘要:
Optical signals are passed in an optical medium using an approach that facilitates the mitigation of interference. According to an example embodiment, a filtering-type approach is used with an optical signal conveyed in an optical fiber, such as a multimode fiber (MMF) or a multimode waveguide. Adaptive spatial domain signal processing, responsive to a feedback signal indicative of data conveyed in the multimode waveguide, is used to mitigate interference in optical signals conveyed in the multimode waveguide.
摘要:
An optical device includes a hollow-core photonic-bandgap fiber, wherein at least a portion of the hollow-core photonic-bandgap fiber has a longitudinal axis and is twisted about the longitudinal axis.
摘要:
An optical fiber includes a cladding with a material having a first refractive index and a pattern of regions formed therein. Each of the regions has a second refractive index lower than the first refractive index. The optical fiber further includes a core region and a core ring surrounding the core region and having an inner perimeter, an outer perimeter, and a thickness between the inner perimeter and the outer perimeter. The thickness is sized to reduce the number of ring surface modes supported by the core ring.
摘要:
A resonator system comprises an optical resonator that supports one or more pairs of nearly degenerate defect states. One or more magnetic domains comprising at least one gyrotropic material in the optical resonator cause magneto-optical coupling between the two states so that the system lacks time-reversal symmetry. In one embodiment, a single magnetic domain is used that dominates induced magneto-optical coupling between the defect states. The above resonator system may be used together with other components such as waveguides to form circulators, add drop filters, switches and memories.