Abstract:
A computer usable medium including computer usable program code for determining an oilfield parameter for a drilling operation. The computer usable program code when executed causing a processor to identify first decision factors and second decision factors about the drilling operation, where each of the first decision factors is contained within first nodes, and where each of the second decision factors is contained within second nodes, where the first and second nodes contain common nodes. The computer usable program code further causing the processor to associate the first nodes to create a first belief network and associate the second nodes to create a second belief network, associate the common nodes of the first belief network with the common nodes of the second belief network to form a multinet belief network, and generate at least one oilfield parameter from the multinet belief network.
Abstract:
An instrument, such as a wall-thickness, rod-wear, or pitting sensor, can monitor tubing as a field service crew extracts the tubing from an oil well or inserts the tubing into the well. A computer-based system can process data from the instrument to evaluate the validity of the data. Validating the data can comprise determining whether any features, structures, or patterns present in the data correlate with actual tubing defects or were caused by a condition unrelated to tubing quality, such as signal noise. The computer-based system can also analyze the data to deduce information about the performance of the well or to determine the well's operating state or status. For example, the data analysis can determine whether the well's fluids have a chemical condition that should be treated or whether a detrimental harmonic oscillation has been occurring in the well's mechanical pumping system.
Abstract:
An iterative drilling simulation method and system for enhanced economic decision making includes obtaining characteristics of a rock column in a formation to be drilled, specifying characteristics of at least one drilling rig system; and iteratively simulating the drilling of a well bore in the formation. The method and system further produce an economic evaluation factor for each iteration of drilling simulation. Each iteration of drilling simulation is a function of the rock column and the characteristics of the at least one drilling rig system according to a prescribed drilling simulation model.
Abstract:
A system and method for monitoring processes in the production of oil and gas uses intelligent software agents employing associative memory techniques that receive data from sensors in the production environment and from other sources and perform pattern matching operations to identify normal and abnormal behavior of the well production. The agents report the behaviors to human operators or other software systems. The abnormal behavior may consist of any behavior of the production processes that is other than the desired behavior of the well. The intelligent software agents are trained to identify both specific behaviors and behaviors that have never before been observed and recognized in the well.
Abstract:
A method of optimizing a drilling tool assembly including inputting well data into an optimization system, the optimization system having an experience data set and an artificial neural network. The method further including comparing the well data to the experience data set and developing an initial drilling tool assembly based on the comparing the well data to the experience data, wherein the drilling tool assembly is developed using the artificial neural network. Additionally, the method including simulating the initial drilling tool assembly in the optimization system and creating result data in the optimization system based on the simulating.
Abstract:
An Instrument, such as a wail-thickness, rod-wear, or pitting sensor, can monitor tubing as a field service crew extracts the tubing from an oil well or inserts the tubing into the well. A computer-based system can process data from the instrument to evaluate the validity of the data. Validating the data can comprise determining whether any features, structures, or patterns present in the data correlate with actual tubing defects or were caused by a condition unrelated to tubing quality, such as signal noise. The computer-based system can also analyze the data to deduce information about the performance of the well or to determine the well's operating state or status. For example, the data analysis can determine whether the well's fluids have a chemical condition that should be treated or whether a detrimental harmonic oscillation has been occurring in the well's mechanical pumping system.
Abstract:
Methods, systems, and computer readable media are provided for fast updating of oil and gas field production optimization using physical and proxy simulators. A base model of a reservoir, well, or a pipeline network is established in one or more physical simulators. A decision management system is used to define uncertain parameters for matching with observed data. A proxy model is used to fit the uncertain parameters to outputs of the physical simulators, determine sensitivities of the uncertain parameters, and compute correlations between the uncertain parameters and output data from the physical simulators. Parameters for which the sensitivities are below a threshold are eliminated. The decision management system validates parameters which are output from the proxy model in the simulators. The validated parameters are used to make production decisions.
Abstract:
Methods, systems, and computer readable media are provided for real-time oil and gas field production optimization using a proxy simulator. A base model of a reservoir, well, pipeline network, or processing system is established in one or more physical simulators. A decision management system is used to define control parameters, such as valve settings, for matching with observed data. A proxy model is used to fit the control parameters to outputs of the physical simulators, determine sensitivities of the control parameters, and compute correlations between the control parameters and output data from the simulators. Control parameters for which the sensitivities are below a threshold are eliminated. The decision management system validates control parameters which are output from the proxy model in the simulators. The proxy model may be used for predicting future control settings for the control parameters.
Abstract:
A downhole drilling tractor for moving within a borehole comprises a tractor body, two packerfeet, two aft propulsion cylinders, and two forward propulsion cylinders. The body comprises aft and forward shafts and a central control assembly. The packerfeet and propulsion cylinders are slidably engaged with the tractor body. Drilling fluid can be delivered to the packerfeet to cause the packerfeet to grip onto the borehole wall. Drilling fluid can be delivered to the propulsion cylinders to selectively provide downhole or uphole hydraulic thrust to the tractor body. The tractor receives drilling fluid from a drill string extending to the surface. A system of spool valves in the control assembly controls the distribution of drilling fluid to the packerfeet and cylinders. The valve positions are controlled by motors. A programmable electronic logic component on the tractor receives control signals from the surface and feedback signals from various sensors on the tool. The feedback signals may include pressure, position, and load signals. The logic component also generates and transmits command signals to the motors, to electronically sequence the valves. Advantageously, the logic component operates according to a control algorithm for intelligently sequencing the valves to control the speed, thrust, and direction of the tractor.
Abstract:
A drilling control system provides, in one aspect, advisory actions for optimal drilling. Such a system or model utilizes downhole dynamics data and surface drilling parameters, to produce drilling models used to provide to a human operator with recommended drilling parameters for optimized performance. In another aspect, the output of the drilling control system is directly linked with rig instrumentation systems so as to provide a closed-loop automated drilling control system that optimizes drilling while taking into account the downhole dynamic behavior and surface parameters. The drilling models can be either static or dynamic. In one embodiment, the simulation of the drilling process uses neural networks to estimate some nonlinear function using the examples of input-output relations produced by the drilling process.