Abstract:
A heading determination system comprises an inertial measurement unit (IMU) coupled with at least two GNSS receivers, each receiver paired with and receiving signals from a corresponding GNSS antenna, wherein the GNSS antennas are separated by an ultra-short baseline. The heading determination system receives signals broadcast by a plurality of GNSS satellites and calculates the phase difference in the signal seen among the separate GNSS antennas. Using this phase difference information, derived from comparing the signals received from a plurality of GNSS satellites, along with attitude data generated by the IMU, the heading determination system calculates a highly-accurate heading solution. A method is provided for determining a heading of a system including an IMU coupled with at least two GNSS receivers, with each receiver being paired with and receiving signals from a corresponding GNSS antenna and the antennas being separated by an ultra-short baseline.
Abstract:
A method for performing integer ambiguity resolution in a global navigation satellite system is disclosed. A set of ambiguities, which are associated with carrier phase measurements of at least some of the signals received from the satellites in an identified set of satellites, are identified. Integer ambiguities are estimated and a best candidate set and a second best candidate set of integer ambiguity values are determined. Upon determining that the best set of integer ambiguity values fail to meet a discrimination test, each ambiguity for which integer ambiguity values in the best candidate set and second best candidate set fail to meet predefined criteria are removed from the set of ambiguities to produce a reduced set of ambiguities. The integer ambiguities in the reduced set of ambiguities are then resolved and an output is generated in accordance with the resolved integer ambiguities.
Abstract:
For enhancing the quality of a relative positioning, a filter is adjusted depending on information on a movement of a satellite signal receiver. A position of the satellite signal receiver is determined relative to a reference station using the filter, wherein measurements on satellite signals received by the satellite signal receiver and measurements on satellite signals provided for the reference station are used as input to the filter. The measurements for the reference station may be received in messages which are assembled and provided for transmission and which may include in addition an indication of a current movement of the reference station.
Abstract:
A method and system for reducing Global Navigation Satellite System (GNSS) carrier tracking loop ambiguities comprising: receiving a plurality of GNSS satellite signals with a first antenna in operable communication with a first tracking device and a second antenna in communication with a second tracking device in at least one GNSS receiver; and sharing of data between the first tracking device and the second tracking device. The sharing is configured to facilitate a commonality in a carrier phase derived in the first and second tracking devices. The sharing also results in a cancellation of the commonality when a difference phase is formed between a carrier phase from the first tracking device and a carrier phase from the second tracking device.
Abstract:
A method and system for reducing Global Navigation Satellite System (GNSS) carrier tracking loop ambiguities comprising: receiving a plurality of GNSS satellite signals with a first antenna in operable communication with a first tracking device and a second antenna in communication with a second tracking device in at least one GNSS receiver; and sharing of data between the first tracking device and the second tracking device. The sharing is configured to facilitate a commonality in a carrier phase derived in the first and second tracking devices. The sharing also results in a cancellation of the commonality when a difference phase is formed between a carrier phase from the first tracking device and a carrier phase from the second tracking device.
Abstract:
The present invention refers to an instrumentation system of an aircraft by means of GPS (Global Positioning System). In particular, it refers to a modular instrumentation system for aircraft, preferably airplanes, based on the GPS, and to the relative method. In one embodiment the modular instrumentation system for aircraft comprises: four antennas (A1-A4) connected to four GPS receivers (GPS1-GPS4) that supply in output the attitude data and the angular velocities; a data acquisition card (S, C) that receives, memorizes and processes said attitude data and said angular velocities coming from said data acquisition card (S, C) and supplies data relating to the board instruments of an aircraft; visualization means (V) of said data relating to the board instruments.
Abstract:
A carrier-phase-based relative positioning device employs a signal processing method which makes it possible to continue estimation of integer ambiguity values even when the number of positioning satellites has changed, determine an integer ambiguity value by efficiently verifying the integer ambiguities in a short time, and calculate a baseline vector. The positioning device includes an integer ambiguity resolving section which determines integer ambiguities of single or double phase differences using a Kalman filter and lambda notation. The Kalman filter is used to calculate estimated values of floating ambiguities and the lambda notation is used to calculate estimated values of the integer ambiguities based on the floating ambiguities. A candidate of a potentially true integer ambiguity that is considered most reliable is determined through various verification processes. When the number of positioning satellites has increased or decreased, or when a reference satellite has been switched, a floating ambiguity after the change in satellite information is estimated from a baseline vector estimated before the change.
Abstract:
An improved positioning and data integrating process and system can substantially solve the problems encountered in system integration for personal hand-held applications, air, land, and water vehicles, wherein an integrated global positioning system/inertial measurement unit, enhanced with optional other devices to derive user position, velocity, attitude, and body acceleration and rotation information, and distributes these data to other onboard systems, for example, in case of aircraft application, flight management system, flight control system, automatic dependent surveillance, cockpit display, enhanced ground proximity warning system, weather radar, and satellite communication system.
Abstract:
A fully-coupled vehicle positioning method and system with differential GPS substantially solves problems encountered in either the global positioning system-only or the inertial novigation system-only, such as loss of global positioning satellite signal, sensitivity to jamming and spoofing, and an inertial solution's drift over time, in which the velocity and acceleration from an inertial navigation processor of the integrated GPS/INS system are used to aid the code and carrier phase tracking of the global positioning system satellite signals, so as to enhance the performance of the global positioning and inertial integration system, even in heavy jamming and high dynamic environments. To improve the accuracy of the integrated GPS/INS navigation system, phase measurements are used and the idea of the differential GPS is employed. A master-slave relative positioning scheme is invented and is effective for high accuracy formation driving and flight.
Abstract:
A method and system for performing integer ambiguity resolution for navigational positioning systems are described. A navigational positioning system includes a pair of receivers with antennas that simultaneously receive signals emitted from satellites or other moving or fixed sources. Potential solutions for the baseline vector between the antennas are determined. Test results are obtained for at least two tests performed on each potential solution. Examples of such tests include comparing a code double difference with each carrier phase double difference and comparing each potential solution with information known about the antennas. Each one of the potential solutions is evaluated as a candidate for a correct solution for the baseline vector. The evaluation of each potential solution is based on every test result obtained for that potential solution without disqualifying any one of the potential solutions as a candidate for the correct solution based on any one test result. A potential solution can therefore remain a candidate for the correct solution despite having produced what conventionally was considered a failing and disqualifying test result for a given test. A numerical or qualitative grade from a continuum of grades is assigned to each test result. The grades for a given potential solution are combined such that every assigned grade for that potential solution contributes to an overall grade that is used when searching for the correction solution from the plurality of potential solutions. Using the overall grades, various criteria can be used to select the correct solution from among the potential solutions.