Abstract:
An infrared scene projector has a cathode ray tube with a display screen coated with a luminescent phosphor material that produces radiation in the infrared spectrum when excited by the electron beam. The desired screen images are generated electronically, the screen is scanned by the cathode ray beam, and the intensity of the beam is modulated by the signal from the image generator.
Abstract:
An efficiently cooled display tube is obtained by pumping a low viscosity liquid having a high heat capacity through a cooling space less than 1 mm. thick on the outside of the display window. A chamber is smoothly connected to the inlet aperture of the cooling space to assure a laminar flow, eliminating swirls which could give rise to refractive patterns in the display picture.
Abstract:
A projection picture tube includes a bulb, a sealing chamber disposed in contact with a front surface of a phosphor screen panel of the bulb and sealed with a liquid coolant, and a holding mechanism for holding the sealing chamber by the bulb. The sealing chamber includes a transparent member disposed in front of the phosphor screen panel to be spaced apart therefrom, a heat dissipation member which is disposed between the transparent member and the phosphor screen panel and part of which is in contact with the liquid coolant sealed in the sealing chamber, seal members respectively disposed between the heat dissipation member and the phosphor screen panel and between the heat dissipation member and the transparent member, and a holding piece for holding the transparent member on the heat dissipation member. The holding mechanism is coupled to the heat dissipation member.
Abstract:
In a cathode ray tube including deflection coils for deflecting an electron beam produced in the tube by an electron gun, the center of the electron gun's focusing lens is positioned to coincide with the deflection point of the deflection coils. This positioning compensates for curvature of the deflection field.
Abstract:
A display tube comprising in an evacuated envelope (1) an electron gun system (6) for generating and focusing by means of a focusing lens at least two electron beams (28 to 35) on a display screen (5), which electron beams are deflected by deflection means and describe a frame on the display screen. The electron gun system (6) comprises at least two electron sources (20 to 26), the electrons in each electron beam being accelerated immediately after leaving the electron source by means of an electric field having a field strength exceeding 600 V/mm. The central axes (36) of the electron beam extend substantially parallel to each other, and all beams are converged by the focusing lens in the immediate proximity of the focus of the focusing lens, after which each separate beam is focused on the display screen by the focusing lens to form a spot. The astigmatism and the coma of the focusing lens, especially for objects not situated on the tube axis, decreases rapidly with decreasing object potential with the beam aperture angle being kept the same. The electrons leave the source at a low potential and are then accelerated in a strong electric field exceeding 600 V/mm nearly immediately after leaving the electron source, thereby effecting production of a very narrow electron beam which remains narrow up to the display screen. The effect of the field curvature of the focusing lens is also considerably reduced by the narrow beams. If all electron beams through the focusing lens converge in the immediate proximity of the focus of the focusing lens, a minimum of aberrations as a result of the deflection is obtained. The electron sources are preferably P-N cathodes or diode type electron guns.
Abstract:
A display tube comprising in an evacuated envelope (1) a display screen (7) provided on the inside of a display window (2) in the wall of the envelope (1), which display screen (7) comprises luminescent material (13), and a multilayer interference filter (12) is provided between this material and the display window and compises a number of layers (HL) which alternately are manufactured from a material having a high (H) and a material having a low (L) refractive index. If the filter is composed substantially of 14 to 30 layers, each having an optical thickness nd, wherein n is the refractive index of the material and d is the thickness, which optical thickness is between 0.2 .lambda..sub.f and 0.3 .lambda..sub.f and preferably between 0.23 .lambda..sub.f and 0.27 .lambda..sub.f, wherein .lambda..sub.f is equal to p x .lambda., wherein .lambda. is the desired central wavelength which is selected from the spectrum emitted by the luminescent material (13) and p is a number between 1.18 and 1.36, a display tube is obtained in which the luminous efficiency in the forward direction and at small angles for the central wavelength of the phosphor is at least 40% larger than in a tube without such a filter. Color improvement and gain in contrast also occur.
Abstract:
A projection cathode-ray tube comprises a vacuum vessel (10) having a face plate (7), an interference thin film (20) on the inner surface of the face plate, a phosphor layer (8) on the interference thin film, a metal-back film (9) on the phosphor layer and an electron gun within the vessel. More than 30% of the total luminous flux from an emission point in the phosphor layer to which the electron beam of the electron gun is applied exists within a divergent angle of .+-. 30.degree. in the direction normal to the face plate.
Abstract:
An image pickup tube target includes a Se-As-Te photoconductive layer whose arsenic concentration changes in a direction of thickness of the Se-As-Te photoconductive layer, a carrier extraction layer having a high arsenic concentration and being contiguous to the Se-As-Te photoconductive layer, a capacitive layer having a low arsenic concentration and being contiguous to the carrier extraction layer, a doped layer obtained by doping In.sub.2 O.sub.3, MoO.sub.2 or a mixture thereof in an interface between the carrier extraction layer and the capacitive layer.
Abstract translation:图像拾取管靶包括Se-As-Te光电导层,其砷浓度在Se-As-Te光电导层的厚度方向上改变,砷浓度高且与Se-As-Te光电导层邻接的载体提取层 -Te光电导层,具有低砷浓度且与载体提取层邻接的电容层,通过在载流子提取层和电容层之间的界面中掺杂In 2 O 3,MoO 2或其混合物而获得的掺杂层。
Abstract:
A CRT device for generating a bright green light spot is shown. The device employs a terbium activated phosphor. Troublesome radiations emitted by the phosphor particularly in the 586 nm region are significantly decreased without significant decrease of the desired 544 nm radiation by use of a concentrated solution of a soluble praseodymium salt.
Abstract:
A cathode-ray tube for a projector, wherein a mesh-like or striped heat conduction member is disposed on an outer surface of a faceplate corresponding to an effective area of a phosphor screen, and the heat conduction member is conductively in contact with a heat radiator which is secured on the outer side of the faceplate.