Abstract:
Disclosed is an actuator including a support member, an actuating unit rotatably installed in the support member and having a first electrode installed on one side and a stimulation providing unit installed on the other side to provide stimulation by rotation, and an attraction force providing unit having a second electrode to provide an attraction force to the first electrode, wherein when an electrostatic attraction force is provided to the first electrode through the second electrode, the actuating unit pivots to enable the stimulation providing unit to apply stimulation to a sensing unit.
Abstract:
Disclosed is an actuator generating haptic sensations, the actuator having a spherical rotor driven by a magnetic force vector created around the same, a stator having a space corresponding in shape to the spherical rotor defined therein to allow the spherical rotor to be positioned in the space and having a portion of an upper part of the spherical rotor exposed, at least three rotation-driving coils formed in the stator at a given distance from each other to provide the magnetic force vector to the spherical rotor, and a driving unit independently controlling electric current supplied to each of the rotation-driving coils to create the magnetic force vector.
Abstract:
Disclosed is a flexible printed circuit board (FPCB) actuator including an FPCB core having a first surface and a second surface, wherein the first surface and the second surface are parallel to each other, a first electrode installed on the first surface and having first parts, wherein the first parts are spaced apart from each other in a first direction at least in part, and a second electrode installed covering at least a portion of the second surface, wherein as control voltage is applied to the first and second electrodes, an electrostatic force generated between the first electrode and the second electrode in a second direction perpendicular to the first direction allows the FPCB core to make a bending motion.
Abstract:
Provided are a method and system for detecting frequency-domain cardiac information, the method comprising: acquiring moving images of a pupil from a subject; extracting a pupil size variation (PSV) from the moving images; extracting a heart rate variability (HRV) spectrum by performing a processing procedure including frequency-analysis of HRV; and calculating power of at least one of a plurality of frequency bands by analysis of the HRV spectrum.
Abstract:
A method for determining a social relationship includes detecting electrocardiogram (ECG) data from at least two subjects, detecting heart rhythm coherence (HRC) data from the ECG signals of the two subjects, and determining a relationship (intimacy) between the two subjects by comparing the HRC data of the two subjects.
Abstract:
In accordance with an aspect, there is provided a method for supporting provision of service so that a client terminal is provided with desired service by adaptively modifying a network topology depending on service properties, including (a) when service type information indicating a type of desired service is acquired from the client terminal, and status information indicating status of one or more service provision servers is acquired, acquiring, by a management server, network configuration information as information corresponding to the service type information and the status information with reference to a DB, wherein the network configuration information is required by the client terminal to be provided with the service from a specific service provision server; and (b) transmitting, by the management server, acquired network configuration information to the client terminal, thus supporting network configuration such that the client terminal configures a network based on the network configuration information.
Abstract:
A head-mounted device (HMD) for enabling a 3D drawing interaction in a mixed-reality space is provided. The HMD includes a frame section, a rendering unit providing a specified image, a camera unit attached to the frame section to pick up an image for rendering, and a control unit configured to, when the camera unit picks up an image of a specified marker, perform a calibration process based on position information of the image of the marker displayed on a screen of the HMD and to, when there is a motion of an input device for interaction with a virtual whiteboard, obtain position information of an image of the input device displayed on a virtual camera screen based on position information of the whiteboard.
Abstract:
An apparatus for creating virtual joint sensation is provided. The apparatus includes: a controlling part for creating control signals for controlling respective user's joints by referring to information on torques to be applied to the respective user's joints, wherein the information on the torques is acquired by analyzing information on forces to be applied to the user's body contacting a virtual object; and a torque-applying part, including one or more torque-applying units worn on the respective user's joints, for giving the torques to the respective user's joints by using the control signals.
Abstract:
In accordance with an aspect, there is provided a method for supporting provision of service so that a client terminal is provided with desired service by adaptively modifying a network topology depending on service properties, including (a) when service type information indicating a type of desired service is acquired from the client terminal, and status information indicating status of one or more service provision servers is acquired, acquiring, by a management server, network configuration information as information corresponding to the service type information and the status information with reference to a DB, wherein the network configuration information is required by the client terminal to be provided with the service from a specific service provision server; and (b) transmitting, by the management server, acquired network configuration information to the client terminal, thus supporting network configuration such that the client terminal configures a network based on the network configuration information.
Abstract:
The present invention relates to an apparatus for recognizing a gesture in a space. In accordance with an embodiment, a spatial gesture recognition apparatus includes a pattern formation unit for radiating light onto a surface of an object required to input a gesture in a virtual air bounce, and forming a predetermined pattern on the surface of the object, an image acquisition unit for acquiring a motion image of the object, and a processing unit for recognizing a gesture input by the object based on the pattern formed on the surface of the object using the acquired image. In this way, depending on the depths of an object required to input a gesture in a space, haptic feedbacks having different intensities are provided, and thus a user can precisely input his or her desired gesture.