DEVICE FOR CONTINUOUS IRRIGATION WITH ACTIVATION IN ENDODONTICS APPLICATION

    公开(公告)号:US20200268491A1

    公开(公告)日:2020-08-27

    申请号:US16800019

    申请日:2020-02-25

    Abstract: Disclosed herein is a dental device for delivering fluid continuously while activated in an endodontic application. The dental device includes a hollow needle having a tip end and a connector portion; and a handle. One end of the handle is configured to be affixed to the connector portion of the hollow needle. The opposite end of the handle is capable of being attached to an endodontic handpiece or a sonic agitator for the activation. The connector portion includes at least one tube connector that is an integral part of the connector portion of the hollow needle or a plurality of openings on the connector portion to accommodate the hollow needle to a connector. The connector is a modular fluid delivery connector which is removable from the needle such that it can be reused.

    Clamping device for clamping a cylindrical instrument shank

    公开(公告)号:US10736712B2

    公开(公告)日:2020-08-11

    申请号:US15566226

    申请日:2016-04-18

    Abstract: The invention relates to a clamping device for clamping a cylindrical instrument shank, in particular, a dental instrument, the clamping device including a spring-loaded element for holding the instrument shank, a hollow shaft for transmitting a rotational movement, and a plunger, with the spring-loaded element being designed as a sleeve with a cylindrical wall, a first opening and a second opening; and the wall having cut-outs. The spring-loaded element, the shaft and the plunger have axes of rotation that are arranged coaxially; the shaft protrudes at least partially into the first opening of the spring-loaded element; and the plunger protrudes at least partially into the second opening of the spring-loaded element.

    Polymer for a glass ionomer cement
    77.
    发明授权

    公开(公告)号:US10449125B2

    公开(公告)日:2019-10-22

    申请号:US15951319

    申请日:2018-04-12

    Abstract: A process for producing a water-soluble, hydrolysis-stable, polymerizable polymer, comprising a) a step of copolymerizing a mixture comprising (i) a first copolymerizable monomer comprising at least one optionally protected carboxylic acid group and a first polymerizable organic moiety, and (ii) a second copolymerizable monomer comprising one or more optionally protected primary and/or secondary amino groups and a second polymerizable organic moiety, for obtaining an amino group containing copolymer; b) a step of coupling to the amino group containing copolymer a compound having a polymerizable moiety and a functional group reactive with an amino group of repeating units derived from the second copolymerizable monomer in the amino group containing copolymer obtained in the first step wherein the optionally protected amino group is deprotected, so that polymerizable pendant groups are linked to the backbone by hydrolysis-stable linking groups, and, optionally, a step of deprotecting the protected carboxylic acid group after step (a) or step (b), for obtaining a polymerizable polymer.

    Device and method for editing a virtual, three-dimensional dental model by means of a virtual tool

    公开(公告)号:US10438417B2

    公开(公告)日:2019-10-08

    申请号:US15614279

    申请日:2017-06-05

    Inventor: Ulf Willers

    Abstract: The invention concerns a device (1) for editing a virtual 3-D model (2) of teeth (2.1, 2.2, 2.3, 2.4) positioned in a dental arch (9, 11) by means of a virtual tool (21, 22, 23, 24, 25, 26, 27, 28, 50). The tool (21, 22, 23, 24, 25, 26, 27, 28, 50) can be used on a first tooth (2.1, 2.3) of the 3-D model (2), whereby the corresponding application is carried out on a second mirrored tooth (2.2, 2.4), contralateral to the first tooth with respect to a plane of symmetry (12), that is, on the tooth on the other side of the plane of symmetry (12), which is positioned as a mirror image of the first tooth (2.1, 2.3) with respect to the plane of symmetry (12).

    METHOD FOR DETECTING THE MOVEMENT OF A TEMPOROMANDIBULAR JOINT

    公开(公告)号:US20190290190A1

    公开(公告)日:2019-09-26

    申请号:US16466316

    申请日:2017-12-06

    Abstract: Described is a method for detecting and displaying the movement of a temporomandibular joint which connects a lower jaw and an upper jaw by magnetic resonance imaging. A marker is secured to the lower jaw, a marker movement curve is generated using magnetic resonance imaging measurement data sets during a first measurement interval, during which the lower jaw is moved relative to the upper jaw, and a point which corresponds to a first position of the lower jaw relative to the upper jaw is ascertained on the movement curve. An image data set is generated during a second measurement interval, during which the temporomandibular joint is not moved, and a first model, which represents at least one part of the upper jaw and/or a temporal bone part that comprises the temporomandibular joint socket, and a second model, which represents at least one part of the lower jaw, are ascertained therefrom. A movement curve of the second model relative to the first model is calculated and displayed using the marker movement curve.

    Method for generating a radial or spiral MRT image

    公开(公告)号:US10386437B2

    公开(公告)日:2019-08-20

    申请号:US15517282

    申请日:2015-10-07

    Abstract: Disclosed herein is a method for generating an MRI image in which a radial or spiral k-chamber path with a constant angular increment Psi is used to take an MRI image, the angular increment Psi being in the angular range of between 5-55 degrees or being in the corresponding supplementary angle Psi′ and is selected according to the formula PsiN,M=pi/(N+1/(M+tau−1)). Alternatively, for an angular increment Psi which deviates from the angle increment of the optimal distribution of n radial profiles Psiopt=180°/n, the minimum scanning efficiency of the angular increment Psi for n>21 profiles is greater than 0.95, the angular increment Psi is in an angular range of 5° to less than 68.7537°, in particular between 5-55 degrees or in the corresponding supplementary angle Psi′. Compared to the arrangement of the radial or spiral profile using the golden angle of 111.24°, the angle increments calculated according to the above formula lead to lower eddy current artifacts, for example during the use of a b-SSFP-pulse sequence.

Patent Agency Ranking