Abstract:
A method and apparatus is disclosed for an improved liquid development system for a high speed reproducing machine having a movable image retention belt. The liquid development system comprising a moving belt applicator mounted on a drive assembly containing at least one drive roll and a low lateral force roll with a position guide. The belt applicator is located in alignment with the image retention belt and spaced therefrom to form a development zone having a uniform gap with an extended length. The applicator drive roll and a low lateral force roll are positoned to transport the belt applicator in the same or opposite direction as the image retention belt, but at a much faster speed to facilitate an evenly distributed flow of liquid developer and to avoid depletion of toner particles from the liquid developer moved through the development zone. An air knife removes excess liquid developer from the developed image on the image retention belt, and a blade cleaner is used to clean the belt applicator after it passes the development zone.
Abstract:
A thermal ink jet printhead ejects ink droplets on demand by utilizing the conservation of momentum of collapsing bubbles in a layer of liquid ink having a predetermined thickness. The printhead has an ink containing chamber with an array of individually addressable heating elements on one chamber interior surface which are aligned with an elongated opening in a parallel, confronting chamber wall. The spacing between the chamber wall with the elongated opening and the chamber surface with the heating elements provide the desired ink layer thickness. Selectively addressed heating elements momentarily produce vapor bubbles in the ink layer. When the bubbles collapse radially inward towards their respective heating elements, an oppositely directed force perpendicular to the heating element is generated which is large enough to overcome the surface tension of the ink in the elongated opening and propel a droplet of ink therefrom towards a recording medium.
Abstract:
A method and apparatus to meter ink for electrographic printing is disclosed. An ink loading mechanism having an anilox roller fills ink from an ink supply into cells in the anilox roller having a plurality of valleys and lands that form the cells. The ink loading mechanism causes the valleys to be full or nearly full with the ink. The anilox roller rotates in a first direction. In one embodiment, a soft blade positioned slightly below surface of the lands removes ink from the cells and causes the valleys to be partially filled as the anilox roller rotates. A hard blade positioned at the surface of the lands to clean residue of ink on the surface of the lands as the anilox roller rotates. In another embodiment, a blanket roller rotationally engaged with the anilox roller pulls ink out of the cells and causes the valleys to be partially filled. The blanket roller rotates in a second direction. A first cleaning blade cleans tops of the lands of the cells.
Abstract:
Exemplary embodiments provide an induction heating member including a substrate and a heating layer disposed on the substrate. The heating layer includes carbon nanotubes and metal. An outer layer is disposed on the heating layer and includes a fluoropolymer.
Abstract:
Apparatuses useful for printing and methods of fixing marking materials onto media are disclosed. An exemplary embodiment of the apparatuses useful in printing includes a first member including a first surface; a second member comprising at least one ferromagnetic material having a relative magnetic permeability greater than 1, a susceptor over the at least one ferromagnetic material, the susceptor comprising at least one electrically resistive metal, and a second surface over the at least one ferromagnetic material and the susceptor, the second surface forming a nip with the first surface at which media are received; and a magnetic field generator for generating a magnetic field to inductively heat the second member.
Abstract:
A print head for a printer includes a jet stack for passage of ink to media to form an image on the media. The jet stack includes a substrate having a micro actuator. The substrate has an opening through the substrate that is proximate to the micro actuator and a diaphragm bonded to the substrate. The diaphragm has an opening through the diaphragm that is configured for fluid communication with the opening through the substrate. The diaphragm opening has a width that is larger than a width of the opening in the substrate.
Abstract:
In a tonerless imaging process, an inked image layer jetted on an image receptor is simultaneously transferred and fused to a recording medium. A radiation-curable material is incorporated in the image layer such that irradiation of the image layer cures the radiation-curable material therein. An ink jet printing apparatus for performing the above process is also disclosed.
Abstract:
An enhanced sheet stripping method and apparatus for stripping toner image carrying copy sheets from a surface of a moving heated fusing member forming a fusing nip. The apparatus includes (a) a moving assembly for moving a cut sheet towards the fusing nip; (b) a sheet curling device positioned upstream of the fusing nip relative to movement of the cut sheet for inducing a desired pre-curl in the cut sheet before the cut sheet enters the fusing nip; and (c) a sheet stripping device positioned downstream of the fusing nip for stripping the cut sheet from contact with the surface of the moving heated fusing member as the cut sheet exits the fusing nip. The method includes inducing a desired curl in the cut sheet before the cut sheet enters the fusing nip and enhanced stripping the cut sheet from contact with the surface of the fuser roll as the cut sheet exits the fusing nip.
Abstract:
A print head pump assembly has a piezo element plate having an array of piezoelectric elements, a channel plate having an array of channel regions corresponding to the array of piezoelectric elements, and a valve plate having an array of reed valve pairs corresponding to the array of channel regions. A print head assembly has at least one ink reservoir, an upper routing plate to receive ink from the ink reservoir, a lower routing plate to direct ink out of the print head, and a pump assembly to draw ink from the upper routing plate and deliver ink to the lower routing plate using piezoelectric diaphragms. A method of delivering ink to a print substrate includes providing ink to a low-pressure reservoir of a print head, drawing ink out of the low-pressure reservoir through an upper routing plate using a pump assembly internal to the print head, and pumping ink out of the print head through a lower routing plate using the pump assembly, such that the drawing and pumping processes continuously alternate.
Abstract:
Methods of leveling ink on substrates and apparatuses useful in printing are provided. An exemplary embodiment of the methods includes irradiating ink disposed on a first surface of a porous substrate with radiation emitted by at least one flash lamp. The radiation flash heats the ink to at least a viscosity threshold temperature of the ink to allow the ink to flow laterally on the first surface to produce leveling of the ink. The ink is heated sufficiently rapidly that heat transfer from the ink to the substrate is sufficiently small during the leveling that ink at the substrate interface is cooled to a temperature below the viscosity threshold temperature thereby preventing any significant ink permeation into the substrate from the first surface.