Abstract:
Methods for efficiently acquiring full-azimuth towed streamer survey data are described. The methods use multiple vessels to perform coil shooting.
Abstract:
A seismic land vibrator, comprising a baseplate comprising a substantially flat, rigid member; at least one driven member that is connected with the baseplate and extends in a direction that is substantially perpendicular to baseplate; a rotation sensor that is coupled to the baseplate and adapted to provide a signal that is indicative of rotational movement of at least a portion of the baseplate.
Abstract:
A marine vibrator has a housing that comprises a displacement member, the displacement member having a first position and a second position, the housing and the displacement member together defining an internal volume. A linear electromagnetic motor interacts with the displacement member so as to move the displacement member between a first position and a second position and correspondingly strokes the displacement member to cover a volume. The linear electromagnetic motor comprises magnets and coils that when energized create an electromagnetic force there between, wherein the linear electromagnetic motor comprises a piston and a guide that substantially surrounds the piston. The piston has incorporated therein either the coils or the magnets, and the guide having incorporated therein the other of the coils or the magnets. The piston is in interaction with the displacement member.
Abstract:
Various implementations described herein are directed to a marine seismic acquisition system. The marine seismic acquisition system may include a first vessel towing a first source array and a first plurality of streamers. The first vessel is configured to travel along a first coil path. The marine seismic acquisition system may include a second vessel towing a second source array and a second plurality of streamers. The second vessel is configured to travel along a second coil path. The marine seismic acquisition system may include a third vessel towing a third source array and a third plurality of streamers. The third vessel is configured to travel along a third coil path. The marine seismic acquisition system may also include a fourth vessel towing a fourth source array and a fourth plurality of streamers. The fourth vessel is configured to travel along a fourth coil path.
Abstract:
A method can include receiving measured values that include representations of constructive interference and destructive interference from an upgoing wavefield and a downgoing ghost wavefield reflected from a sea surface; and estimating at least one of the wavefields with attenuated noise.
Abstract:
A technique includes receiving sensor acquired data, which includes pressure data representative of at least one pressure measurement of a wavefield and particle motion data representative of at least one particle motion measurement of the wavefield. The technique includes filtering the pressure data and the particle motion data with a plurality of directional filters to provide a plurality of filtered datasets. The filtered datasets are associated with different directional ranges. The technique includes estimating an angle of incidence for at least one of the directional ranges based at least in part on at least one of the filtered datasets; and processing the acquired data to determine at least one of an upgoing component of the wavefield and a downgoing component of the wavefield based at least in part on the at least one estimated angle of incidence.
Abstract:
Computing systems and methods for geosciences collaboration are disclosed. In one embodiment, a method for geosciences collaboration includes obtaining a first set of geosciences information from a first computer system of the plurality of computer systems; distributing the first set of geosciences information from the first computer system to at least a second computer system; receiving a user input from the second computer system of the plurality of computer systems, the user input entered manually by a user; providing the user input to the first computer system; in response to providing the user input to the first computer system, receiving a revised set of geosciences information from the first computer system; and repeating the receiving a user input, the providing the user input, and the receiving the revised set of geosciences information until the revised set of geosciences information is determined to satisfy accuracy criteria.
Abstract:
Systems, methods, and computer-readable media for visualizing a seismic attribute. The method includes obtaining data representing a seismic image based on seismic data of at least a portion of a subterranean volume, obtaining data representing a first seismic attribute calculated based on the seismic data, and determining one or more characteristics of one or more first attribute indicators based on the first seismic attribute. At least one of the one or more characteristics comprises an orientation of the one or more first attribute indicators. The method also includes displaying the one or more first attribute indicators in combination with the seismic image.
Abstract:
Systems and methods for carrying out seismic surveys and/or conducting permanent reservoir monitoring with autonomous or remote-controlled water vehicles, including surface and submersible vehicles, are described. Additional methods carried out by autonomous or remote-controlled water vehicles and associated with seismic surveys are further described.