Abstract:
A belt device includes a plurality of support rotators, a belt, a cleaner, and a rotator inclination unit. The belt is looped around the plurality of support rotators and moves according to rotation of the plurality of support rotators. The cleaner contacts a surface of the belt to remove foreign substances. The rotator inclination unit inclines an inclined support rotator that is at least one of the plurality of support rotators. The cleaner is disposed in contact with a portion of the belt stretched taut between the inclined support rotator and another support rotator. A pushing amount of the cleaner relative to the belt varies according to inclination of the inclined support rotator and is smallest in a state in which the inclined support rotator is not inclined by the rotator inclination unit.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a slidable member, and a rotation restrictor. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The slidable member is slidably disposed around the roller shaft to move along the roller shaft as the belt moves laterally outward in the axial direction. The rotation restrictor is disposed adjacent to the slidable member to restrict rotation of the slidable member around the roller shaft.
Abstract:
A belt assembly includes a belt formed into an endless loop, a plurality of support rollers with a rotary shaft, a shaft-end retainer, a movable supporting member, and a drive transmission device. The plurality of support rollers includes a first support roller and a second support roller. The shaft-end retainer is disposed at each end of the rotary shaft of the plurality of support rollers. The movable supporting member supports the first support roller and is movably disposed relative to the shaft-end retainer. The drive transmission device transmits a driving force to one of the plurality of support rollers. The drive transmission device and the movable supporting member are disposed on a same side as the shaft-end retainer in an axial direction of the plurality of support rollers. The drive transmission device is disposed between the shaft-end retainer and the movable supporting member in the axial direction.
Abstract:
A belt assembly includes a belt formed into an endless loop, a plurality of support rollers with a rotary shaft, a shaft-end retainer, a movable supporting member, and a drive transmission device. The plurality of support rollers includes a first support roller and a second support roller. The shaft-end retainer is disposed at each end of the rotary shaft of the plurality of support rollers. The movable supporting member supports the first support roller and is movably disposed relative to the shaft-end retainer. The drive transmission device transmits a driving force to one of the plurality of support rollers. The drive transmission device and the movable supporting member are disposed on a same side as the shaft-end retainer in an axial direction of the plurality of support rollers. The drive transmission device is disposed between the shaft-end retainer and the movable supporting member in the axial direction.
Abstract:
A belt device incorporatable in an image forming apparatus includes an endless belt, multiple belt tension rollers disposed in contact with an inner surface of the endless belt, a rotary cleaning member to contact a belt wound area of the endless belt facing an opposing roller to form a cleaning nip between the rotary cleaning member and the endless belt and rotate the rotary cleaning member in a direction opposite the belt moving direction within the cleaning nip, and a voltage applier. The cleaning nip is formed by offsetting a center of the cleaning nip upstream from a center of the belt wound area of the endless belt in the belt moving direction and by at least contacting the rotary cleaning member in a range from the belt wound area to a tensioned belt area located upstream from the belt wound area in the belt moving direction.
Abstract:
A belt tracking system for controlling the lateral position of a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a roller shaft, a stationary member, a slidable member, and a biasing mechanism. The roller shaft extends outward in the axial direction from an axial end of a specific one of the plurality of generally parallel rollers. The stationary member is fixed in position adjacent to the roller shaft to define a first interfacial surface therealong. The slidable member is co-movably coupled with the roller shaft to define a second interfacial surface therealong inclined relative to the axial direction. The biasing mechanism is connected to the roller shaft to press the slidable member against the stationary member.
Abstract:
An image forming apparatus including a belt cleaning device is provided. The belt cleaning device includes an image bearing belt having an elastic layer, a cleaning member, a cleaning facing member, and a side seal. A surface of the image bearing belt is movable. The cleaning member is in contact with the surface of the image bearing belt to remove a substance adhered thereto. The cleaning facing member is disposed on a back-surface side of the image bearing belt while facing the cleaning member with the image bearing belt therebetween. The side seal is disposed to an axial end part of the cleaning member and pressed against the surface of the image bearing belt. The cleaning facing member is out of contact with the back side of the image bearing belt within an area where the cleaning facing member faces the side seal with respect to an axial direction.
Abstract:
A belt positioning system for positioning a movable belt entrained about a plurality of generally parallel rollers for moving in a trans-axial direction perpendicular to an axial direction in which the rollers extend parallel to each other includes a tapered flange. The tapered flange is operatively connected to an axial end of a specific one of the plurality of generally parallel rollers, and includes a generally planar contact surface and an angled guide surface. The generally planar contact surface extends generally perpendicular to the axial direction to contact an adjoining edge of the belt. The angled guide surface extends radially outward from the contact surface and has a diameter increasing outward in the axial direction.
Abstract:
A cleaning device including a normally charged toner cleaning member provided in contact with a cleaning target at a contact position to remove normally charged toner from the cleaning target, a reversely charged toner cleaning member provided in contact with the cleaning target at a contact position upstream from the normally charged toner cleaning member to remove reversely charged toner from the cleaning target, and a pre-cleaning member provided in contact with the cleaning target at a contact position upstream from both the normally and reversely charged toner cleaning members to remove normally charged toner from the cleaning target. The contact position between the pre-cleaning member and the cleaning target has a width wider than a width of the contact position between the normally charged toner cleaning member and the cleaning target and a width of the contact position between the reversely charged toner cleaning member and the cleaning target.
Abstract:
A cleaning device including a cleaning blade configured to clean a surface of a cleaning target that is moving. A leading edge which is formed between lower and leading surfaces of the cleaning blade is obtuse-angled with respect to the lower surface and is in contact with the surface of the cleaning target during use. The leading surface of the cleaning blade is curved outward when the cleaning blade is not in contact with the cleaning target.