Abstract:
A sealed button assembly including a button cap, a push rod, a button retainer, and a bracket is described. The bracket can couple to the button retainer which itself can interlock with the button cap and push rod through a counterbore, the counterbore being defined in a sidewall of the housing of an electronic device.
Abstract:
An electronic device is disclosed. The electronic device may include a sealing element between a protective cover and a housing of the electronic device. The sealing element may provide a seal between the protective cover and the enclosure, as well as monitor or detect a force to the protective cover. Also, one or more support members may surround the sealing element to provide protection against a material (such as liquid) entering an opening between the protective cover and the enclosure. Alternatively, or in combination, the sealing element may include several openings, each of which may include a restraining element to limit movement of the sealing element. Also, a blocking element may be placed at or near an edge of the enclosure to provide additional reinforcement if the sealing element is laterally displaced. The blocking element may include an operational component of the electronic device, such as an antenna.
Abstract:
An array of electrical components may be mounted in openings in an electronic device housing. The housing may have a cylindrical shape or other curved shape. A support structure such as a hollow cylindrical tube may be mounted within the interior of the housing. The electrical components may have terminals that mate with corresponding contacts on a flexible printed circuit. Interconnect paths on the flexible printed circuit may be used to route signals for the electrical components. The flexible printed circuit may be wrapped into the shape of a cylindrical tube and may be mounted on an interior surface of the cylindrical housing or on the exterior surface of the support structure.
Abstract:
An array of electrical components may be mounted in openings in an electronic device housing. Gaskets may be used to seal the electrical components to a housing wall. The housing wall may be planar or may have a cylindrical shape or other curved shape. The electrical components may be mounted to the housing wall using screws and nuts. Each nut may have a central member with opposing stops at the ends of the central member. An opening in each central member may receive a screw to allow the nut to rotate between an installation position and a locked position. The openings in the housing wall may have scalloped extensions that allow the nuts to clear the housing wall while the components are being inserted into the housing. Following installation, the nuts may be rotated into the locked positions.
Abstract:
An electronic device may have a rigid support structure to which electrical components are mounted. The rigid support structure may be an electronic device housing structure such as a housing wall having openings that receive the electrical components. The electrical components may have electrical component connectors. A printed circuit board may be used to convey signals for the electrical components. Connectors may be mounted to the printed circuit board. Lateral shift accommodation structures may be formed between the electrical component connectors and the electrical components or in the vicinity of the connectors on the printed circuit to allow the connectors on the printed circuit to mate with the electrical component connectors of the rigidly mounted electrical components.
Abstract:
An acoustic port of acoustic device is covered with a mesh and/or other structure that resists entry of liquid and/or other materials into the acoustic device. Apertures of a housing that are separated by an umbrella section are coupled to the acoustic port such that the umbrella section may cover the acoustic port. In this way, when liquid enters one or more of the apertures, the umbrella section may direct the liquid away from the mesh such that pressure from the liquid upon the mesh may be reduced. As such, potential damage to the mesh and/or internal acoustic device components may be mitigated. In some implementations, the apertures may be covered with an additional mesh. Such additional mesh may further reduce the pressure of entering liquid on the mesh covering the acoustic port of the acoustic device.