摘要:
An “Image Denoiser” provides a probabilistic process for denoising color images by segmenting an input image into regions, estimating statistics within each region, and then estimating a clean (or denoised) image using a probabilistic model of image formation. In one embodiment, estimated blur between each region is used to reduce artificial sharpening of region boundaries resulting from denoising the input image. In further embodiments, the estimated blur is used for additional purposes, including sharpening edges between one or more regions, and selectively blurring or sharpening one or more specific regions of the image (i.e., “selective focus”) while maintaining the original blurring between the various regions.
摘要:
A system and process for determining the vignetting function of an image and using the function to correct for the vignetting is presented. The image can be any arbitrary image and no other images are required. The system and process is designed to handle both textured and untextured segments in order to maximize the use of available information. To extract vignetting information from an image, segmentation techniques are employed that locate image segments with reliable data for vignetting estimation. Within each image segment, the system and process capitalizes on frequency characteristics and physical properties of vignetting to distinguish it from other sources of intensity variation. The vignetting data acquired from segments are weighted according to a presented reliability measure to promote robustness in estimation.
摘要:
A flash-based strategy is used to separate foreground information from background information within image information. In this strategy, a first image is taken without the use of flash. A second image is taken of the same subject matter with the use of flash. The foreground information in the flash image is illuminated by the flash to a much greater extent than the background information. Based on this property, the strategy applies processing to extract the foreground information from the background information. The strategy supplements the flash information by also taking into consideration motion information and color information.
摘要:
In the described embodiment, methods and systems for processing facial image data for use in animation are described. In one embodiment, a system is provided that illuminates a face with illumination that is sufficient to enable the simultaneous capture of both structure data, e.g. a range or depth map, and reflectance properties, e.g. the diffuse reflectance of a subject's face. This captured information can then be used for various facial animation operations, among which are included expression recognition and expression transformation.
摘要:
In the described embodiment, methods and systems for processing facial image data for use in animation are described. In one embodiment, a system is provided that illuminates a face with illumination that is sufficient to enable the simultaneous capture of both structure data, e.g. a range or depth map, and reflectance properties, e.g. the diffuse reflectance of a subject's face. This captured information can then be used for various facial animation operations, among which are included expression recognition and expression transformation.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A system and method for deghosting mosaics provides a novel multiperspective plane sweep approach for generating an image mosaic from a sequence of still images, video images, scanned photographic images, computer generated images, etc. This multiperspective plane sweep approach uses virtual camera positions to compute depth maps for columns of overlapping pixels in adjacent images. Object distortions and ghosting caused by image parallax when generating the image mosaics are then minimized by blending pixel colors, or grey values, for each computed depth to create a common composite area for each of the overlapping images. Further, the multiperspective plane sweep approach described herein is both computationally efficient, and applicable to both the case of limited overlap between the images used for creating the image mosaics, and to the case of extensive or increased image overlap.
摘要:
An imaging device is calibrated using a flat, featureless surface and uniform illumination, relying on the effect of off-axis illumination and vignetting on the reduction of light into the camera at off-axis angles. The effect of the tilt of the camera is also considered. These effects are used to extract intrinsic camera parameters including focal length, principal point, aspect ratio and skew.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.