摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
A system and process for reconstructing optimal texture maps from multiple views of a scene is described. In essence, this reconstruction is based on the optimal synthesis of textures from multiple sources. This is generally accomplished using basic image processing theory to derive the correct weights for blending the multiple views. Namely, the steps of reconstructing, warping, prefiltering, and resampling are followed in order to warp reference textures to a desired location, and to compute spatially-variant weights for optimal blending. These weights take into consideration the anisotropy in the texture projection and changes in sampling frequency due to foreshortening. The weights are combined and the computation of the optimal texture is treated as a restoration problem, which involves solving a linear system of equations. This approach can be incorporated in a variety of applications, such as texturing of 3D models, analysis by synthesis methods, super-resolution techniques, and view-dependent texture mapping.
摘要:
The system of the invention aligns a set plural overlapping images useful in constructing a mosaic by performing patch-based alignment of the set of overlapping images to produce a set of warped images, performing block adjustment of the set of warped images to produce a set of block-adjusted images, and then performing pair-wise motion-based local warping of the set of block-adjusted images.
摘要:
The texture map construction method and apparatus of the invention constructs, from a set of overlapping images, a texture map divisible into plural faces. This is accomplished for each one of the plural faces by computing a texture mapping transform which maps between pixel locations in the texture map and a three-dimensional coordinate system. For each image of the set, an image transform is computed which maps between pixel locations in the image and the three-dimensional coordinate system. For each image of the set, the texture mapping transform and the image transform are combined to produce a texture map-to-image space transform mapping between pixel locations in the image and pixel locations in the texture map. For each one of the pixel locations in the one face of the texture map, the system computes from the texture map-to-image space transform a pixel value of a pixel location in the image corresponding to the one pixel location in the one face of the texture map. This produces a set of image pixel values from the set of overlapping images for the one pixel location in the texture space. Finally, the set of image pixel values are blended to produce a composite pixel value for the one pixel location in the one face of the texture map.
摘要:
The invention aligns a set of plural images to construct a mosaic image. At least different pairs of the images overlap partially (or fully), and typically are images captured by a camera looking at the same scene but oriented at different angles from approximately the same location or similar locations. In order to align one of the images with another one of the images, the following steps are carried out: (a) determining a difference error between the one image and the other image; (b) computing an incremental rotation of the one image relative to a 3-dimensional coordinate system through an incremental angle which tends to reduce the difference error; and (c) rotating the one image in accordance with the incremental rotation to produce an incrementally warped version of the one image. As long as the difference error remains significant, the method continues by re-performing the foregoing determining, computing and rotating steps but this time with the incrementally warped version of the one image.
摘要:
The invention is embodied in a block adjustment method and apparatus which simultaneously aligns a set of overlapping images in order to construct an image mosaic. For each one of the images of the set, the invention performs the alignment by determining ray directions relative to a 3-dimensional coordinate system at plural predetermined pixel locations in the one image. For each one of the plural pixel locations in the one image, ray directions are determined relative to the 3-dimensional coordinate system of the corresponding pixel location in each one of the other images overlapping the one predetermined pixel location of the one image. Then, incremental deformations of the overlapping images are computed which simultaneously minimize differences between the ray directions of plural pairs of the overlapping images which include the one image. The foregoing is performed for each of the plural predetermined pixel locations of the one image simultaneously. The images are warped in accordance with the incremental deformations and the process is repeated.